English

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए। cos 2π15cos 4π15cos 8π15cos 16π15=116 - Mathematics (गणित)

Advertisements
Advertisements

Question

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है।

स्पष्टीकरण:

`cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15 = 1/16` का एलएचएस लेने पर और विस्तृत करने पर।

∴ `cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15`

= cos 24°.cos 48°.cos 96°.cos 192°

= `1/(16  sin 24^circ) [(2 sin 24^circ cos 24^circ)(2 cos 48^circ)(2 cos 96^circ)(2 cos 192^circ)]`

= `1/(16  sin24^circ) [2sin 48^circ . 2 cos48^circ (2 cos 96^circ)(2 cos192^circ)]`

विस्तृत करने पर,

∴ `cos  (2pi)/15 .cos  (4pi)/15 .cos  (8pi)/15 .cos  (16pi)/15`

= cos 24°.cos 48°.cos 96°.cos 192°

= `1/(16  sin 24^circ) [(2sin24^circ cos24^circ) (2cos48^circ) (2cos96^circ)(2cos 192^circ)]`

= `1/(16  sin 24^circ) [2 sin 48^circ .2cos 48^circ (2 cos 96^circ)(2 cos 192^circ)]`

विस्तृत करने पर,

= `1/(16  sin 24^circ) 2sin192^circ cos192^circ` [∵ sin(360° + θ) = sinθ]

= `1/(16  sin 24^circ) sin 384^circ`

= `1/(16  sin 24^circ) sin24^circ`

= `1/16`

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 60]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 71. | Page 60

RELATED QUESTIONS

सिद्ध कीजिए: `sin^2  pi/6 + cos^2  pi/3 - tan^2  π/4 = - 1/2`


सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


मान ज्ञात कीजिए: sin 75°


निम्नलिखित को सिद्ध कीजिए:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

cos2 2x – cos2 6x = sin 4x sin 8x


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


निम्नलिखित को सिद्ध कीजिए:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


निम्नलिखित को सिद्ध कीजिए:

cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1


यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।


यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।


sin(45° + θ) - cos(45° - θ) का मान है।


यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


`sin  π/18 + sin  π/9 + sin  (2π)/9 + sin  (5π)/18`

का मान निम्नलिखित है -


यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -


फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×