Advertisements
Advertisements
प्रश्न
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
विकल्प
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
`cos (2pi)/15 .cos (4pi)/15 .cos (8pi)/15 .cos (16pi)/15 = 1/16` का एलएचएस लेने पर और विस्तृत करने पर।
∴ `cos (2pi)/15 .cos (4pi)/15 .cos (8pi)/15 .cos (16pi)/15`
= cos 24°.cos 48°.cos 96°.cos 192°
= `1/(16 sin 24^circ) [(2 sin 24^circ cos 24^circ)(2 cos 48^circ)(2 cos 96^circ)(2 cos 192^circ)]`
= `1/(16 sin24^circ) [2sin 48^circ . 2 cos48^circ (2 cos 96^circ)(2 cos192^circ)]`
विस्तृत करने पर,
∴ `cos (2pi)/15 .cos (4pi)/15 .cos (8pi)/15 .cos (16pi)/15`
= cos 24°.cos 48°.cos 96°.cos 192°
= `1/(16 sin 24^circ) [(2sin24^circ cos24^circ) (2cos48^circ) (2cos96^circ)(2cos 192^circ)]`
= `1/(16 sin 24^circ) [2 sin 48^circ .2cos 48^circ (2 cos 96^circ)(2 cos 192^circ)]`
विस्तृत करने पर,
= `1/(16 sin 24^circ) 2sin192^circ cos192^circ` [∵ sin(360° + θ) = sinθ]
= `1/(16 sin 24^circ) sin 384^circ`
= `1/(16 sin 24^circ) sin24^circ`
= `1/16`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
मान ज्ञात कीजिए: sin 75°
मान ज्ञात कीजिए tan 15°
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
tan75° - cot75° का मान है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`