English

अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है - - Mathematics (गणित)

Advertisements
Advertisements

Question

अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -

Options

  • 0

  • 1

  • 2

  • 3

MCQ

Solution

2

स्पष्टीकरण:

`sinx/cosx + 1/cosx = 2cosx`

= sinx + 1 = 2cos2x `[(∵cos2θ = 2cos^2θ - 1),(=1 - 2sin^2theta)]`

= sinx = cos2x = 1 - 2sin2x

= 2sin2x + sinx - 1 = 0

= 2sin2x + 2sinx - sinx - 1 = 0

= (2sinx - 1) (sinx + 1) = 0

= `sinx = 1/2`, sinx = -1

x = `(pi/6)/((5pi)/6)`, x = `(3pi)/2`

tanx → x ∈ R - `(2x + 1)pi/2`

अतः, इसके दो हल होंगे।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 58]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 53. | Page 58

RELATED QUESTIONS

सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


निम्नलिखित को सिद्ध कीजिए:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2  (x - y)/2`


सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos  x/2  cos  (3x)/2`


यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।

[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


tan75° - cot75° का मान है।


tan3A - tan2A - tanA बराबर है।


यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।


`sin  pi/10 sin  (13pi)/10` का मान है - 

[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]


यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos  θ/2` का मान बराबर है -


यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -


यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

θ का एक मान, जो समीकरण sin4θ - 2sin2θ - 1 = 0 को संतुष्ट करता है, तथा 0 और 2π के बीच में स्थित होता है।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×