Advertisements
Advertisements
Question
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
Solution
बायाँ पक्ष = sin 3x + (sin 2x – sin x)
= `2sin (3x)/2 cos (3x)/2 + 2 cos (2x + x)/2 sin (2x - x)/2` `[∵ sin A = 2sin A/2 cos A/2]`
= `2 sin (3x)/2 cos (3x)/2 +2cos (3x)/2 sin (x)/2`
= `2cos (3x)/2 [sin (3x)/2 + sin x/2 ]`
= `2cos (3x)/2 [(2sin (3x)/2 + x/2)/2 (cos (3x)/2 - x/2)/2]`
= `2cos (3x)/3 [2sin x cos x/2] = 4 sin x cos x/2 cos (3x)/2`
= दायाँ पक्ष।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
tan3A - tan2A - tanA बराबर है।
sin(45° + θ) - cos(45° - θ) का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।