Advertisements
Advertisements
Question
का मान निम्नलिखित है -
Options
`sin (7pi)/18 + sin (4pi)/9`
1
`cos pi/6 + cos (3pi)/7`
`cos pi/9 + sin pi/9`
Solution
`bbunderline(sin (7pi)/18 + sin (4pi)/9)`
स्पष्टीकरण:
जान लेते है कि, दी गई अभिव्यक्ती `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` है।
∴ `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = (sin (5pi)/18 + sin pi/18) + (sin (2pi)/9 + sin pi/9)`
सर्वसमिका के जोड का उपयोग करने पर,
∴ `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = 2sin (((5pi)/18 + pi/18)/2) . cos (((5pi)/18 - pi/18)/2) + 2sin (((2pi)/9 + pi/9)/2).cos(((2pi)/9 - pi/9)/2)`
= `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = 2sin pi/6.cos pi/9 + 2sin pi/6. cos pi/18`
= `2 xx 1/2 cos pi/9 + 2 xx 1/2 cos pi/18`
= `cos pi/9 + cos pi/18`
विस्तृत करने पर,
= `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = sin (7pi)/18 + sin (8pi)/18`
= `sin (7pi)/18 + sin (4pi)/9`
सही पर्याय `sin (7pi)/18 + sin (4pi)/9` है।
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
tan75° - cot75° का मान है।
tan3A - tan2A - tanA बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`