Advertisements
Advertisements
Question
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
Solution
जान लेते है कि, दी गई अभिव्यक्ती है,
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x)
= 3[sin2x + cos2x - 2sinx cosx]2 + 6(sin2x + cos2x + 2sinx cosx) + 4[(sin2x)3 + (cos2x)3]
= 3[1 - 2sinx cosx]2 + 6(1 + 2sinx cosx) + [4(sin2x + cos2x)3 - 3sin2x cos2x(sin2x + cos2x)]
= 3[1 + 4sin2x cos2x - 4sinx cosx] + (1 + 2sinx cosx) + [1 - 3sin2x cos2x]
विस्तृत करने पर,
= 3 + 12sin2x cos2x - 12sinx cosx + 6 + 12sinx cosx + 4 - 12sin2x cos2x
= 3 + 6 + 4
= 13
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
मान ज्ञात कीजिए: sin 75°
मान ज्ञात कीजिए tan 15°
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
sin(45° + θ) - cos(45° - θ) का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।