Advertisements
Advertisements
प्रश्न
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x) = ______
उत्तर
जान लेते है कि, दी गई अभिव्यक्ती है,
3(sinx - cosx)4 + 6(sinx + cosx)2 + 4(sin6x + cos6x)
= 3[sin2x + cos2x - 2sinx cosx]2 + 6(sin2x + cos2x + 2sinx cosx) + 4[(sin2x)3 + (cos2x)3]
= 3[1 - 2sinx cosx]2 + 6(1 + 2sinx cosx) + [4(sin2x + cos2x)3 - 3sin2x cos2x(sin2x + cos2x)]
= 3[1 + 4sin2x cos2x - 4sinx cosx] + (1 + 2sinx cosx) + [1 - 3sin2x cos2x]
विस्तृत करने पर,
= 3 + 12sin2x cos2x - 12sinx cosx + 6 + 12sinx cosx + 4 - 12sin2x cos2x
= 3 + 6 + 4
= 13
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan75° - cot75° का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।