Advertisements
Advertisements
प्रश्न
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
उत्तर
हमें दिया है: a tanθ + bsecθ = c या asinθ + b = c cos θ
सर्वसमिकाओं,
sin θ = `(2tan theta/2)/(1 + tan^2 theta/2)` और cos θ = `(1 - tan^2 theta/2)/(1 + tan^2 theta/2)` का प्रयोग करने पर,
`(a(2tan theta/2))/(1 + tan^2 theta/2) + b = (c(1 - tan^2 theta/2))/(1 + tan^2 theta/2)`
या `(b + c) tan^2 theta/2 + 2a tan theta/2 + b - c` = 0
उपरोक्त समीकरण `tan theta/2` में एक द्विघात समीकरण है और इसलिए `tan alpha/2` और `tan beta/2` इस समीकरण के मूल हैं।
इसलिए, `tan alpha/2 + tan beta/2 = (-2a)/(b + c)` और `tan alpha/2 tan beta/2 = (b - c)/(b + c)` है।
सर्वसमिका `tan(alpha/2 + beta/2) = (tan alpha/2 + tan beta/2)/(1 - tan alpha/2 tan beta/2)` का प्रयोग करने पर,
हमें प्राप्त होता है: `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`
= `(-2a)/(2c) = (-a)/c` .....(1)
पुनः, एक अन्य सर्वसमिका
`tan 2 (alpha + beta)/2 = (2tan (alpha + beta)/2)/(1 - tan^2 (alpha + beta)/2)` के प्रयोग से,
हमें प्राप्त होता है: tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`
= `(2ac)/(a^2 - c^2)` ......[(1) से]
वैकल्पिक रूप से, a tanθ + b secθ = c
⇒ (a tanθ – c)2 = b2 (1 + tan2θ)
⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ
⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0 ......(1)
क्योंकि tanα और tanβ समीकरण (1) के मूल हैं,
इसलिए tanα + tanβ = `(2ac)/(a^2 - b^2)`
और tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`
अतः, tan (α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`
= `(2ac)/(a^2 - c^2)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin x - siny)/(cos x + cos y)= tan (x -y)/2`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
tan75° - cot75° का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
tan3A - tan2A - tanA बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`