Advertisements
Advertisements
प्रश्न
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
उत्तर
हमें दिया है: a tanθ + bsecθ = c या asinθ + b = c cos θ
सर्वसमिकाओं,
sin θ = `(2tan theta/2)/(1 + tan^2 theta/2)` और cos θ = `(1 - tan^2 theta/2)/(1 + tan^2 theta/2)` का प्रयोग करने पर,
`(a(2tan theta/2))/(1 + tan^2 theta/2) + b = (c(1 - tan^2 theta/2))/(1 + tan^2 theta/2)`
या `(b + c) tan^2 theta/2 + 2a tan theta/2 + b - c` = 0
उपरोक्त समीकरण `tan theta/2` में एक द्विघात समीकरण है और इसलिए `tan alpha/2` और `tan beta/2` इस समीकरण के मूल हैं।
इसलिए, `tan alpha/2 + tan beta/2 = (-2a)/(b + c)` और `tan alpha/2 tan beta/2 = (b - c)/(b + c)` है।
सर्वसमिका `tan(alpha/2 + beta/2) = (tan alpha/2 + tan beta/2)/(1 - tan alpha/2 tan beta/2)` का प्रयोग करने पर,
हमें प्राप्त होता है: `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`
= `(-2a)/(2c) = (-a)/c` .....(1)
पुनः, एक अन्य सर्वसमिका
`tan 2 (alpha + beta)/2 = (2tan (alpha + beta)/2)/(1 - tan^2 (alpha + beta)/2)` के प्रयोग से,
हमें प्राप्त होता है: tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`
= `(2ac)/(a^2 - c^2)` ......[(1) से]
वैकल्पिक रूप से, a tanθ + b secθ = c
⇒ (a tanθ – c)2 = b2 (1 + tan2θ)
⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ
⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0 ......(1)
क्योंकि tanα और tanβ समीकरण (1) के मूल हैं,
इसलिए tanα + tanβ = `(2ac)/(a^2 - b^2)`
और tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`
अतः, tan (α + β) = `(tan alpha + tan beta)/(1 - tan alpha tan beta)`
= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`
= `(2ac)/(a^2 - c^2)`
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।
[संकेत: योगांतरानुपात का प्रयोग कीजिए।]
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan75° - cot75° का मान है।
cos12° + cos84° + cos156° + cos132° का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।