हिंदी

यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = 2aca2-c2 है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।

योग

उत्तर

हमें दिया है: a tanθ + bsecθ = c या asinθ + b = c cos θ

सर्वसमिकाओं,

sin θ = `(2tan  theta/2)/(1 + tan^2  theta/2)` और cos θ = `(1 - tan^2  theta/2)/(1 + tan^2  theta/2)` का प्रयोग करने पर,

`(a(2tan  theta/2))/(1 + tan^2  theta/2) + b = (c(1 - tan^2  theta/2))/(1 + tan^2  theta/2)`

या `(b + c) tan^2  theta/2 + 2a tan  theta/2 + b - c` = 0

उपरोक्त समीकरण `tan  theta/2` में एक द्विघात समीकरण है और इसलिए `tan  alpha/2` और `tan  beta/2` इस समीकरण के मूल हैं। 

इसलिए, `tan  alpha/2 + tan  beta/2 = (-2a)/(b + c)` और `tan  alpha/2  tan  beta/2 = (b - c)/(b + c)` है।

सर्वसमिका `tan(alpha/2 + beta/2) = (tan  alpha/2 + tan  beta/2)/(1 - tan  alpha/2 tan   beta/2)` का प्रयोग करने पर,

हमें प्राप्त होता है: `tan(alpha/2 + beta/2) = ((-2a)/(b + c))/(1 - (b - c)/(b + c))`

= `(-2a)/(2c) = (-a)/c`  .....(1)

पुनः, एक अन्य सर्वसमिका

`tan 2 (alpha + beta)/2 = (2tan  (alpha + beta)/2)/(1 - tan^2  (alpha + beta)/2)` के प्रयोग से,

हमें प्राप्त होता है: tan (α + β) = `(2(- a/c))/(1 - a^2/c^2)`

= `(2ac)/(a^2 - c^2)`  ......[(1) से]

वैकल्पिक रूप से, a tanθ + b secθ = c

⇒ (a tanθ – c)2 = b2 (1 + tan2θ)

⇒ a2 tan2θ – 2ac tanθ + c2 = b2 + b2 tan2θ

⇒ (a2 – b2) tan2θ – 2ac tanθ + c2 – b2 = 0  ......(1)

क्योंकि tanα और tanβ समीकरण (1) के मूल हैं,

इसलिए tanα + tanβ = `(2ac)/(a^2 - b^2)`

और tanα tanβ = `(c^2 - b^2)/(a^2 - b^2)`

अतः,  tan (α + β) = `(tan  alpha + tan beta)/(1 - tan alpha tan beta)`

= `((2ac)/(a^2 - b^2))/((c^2 - b^2)/(a^2 - b^2))`

= `(2ac)/(a^2 - c^2)`

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - हल किये हुए उदाहरण [पृष्ठ ४४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
हल किये हुए उदाहरण | Q 11 | पृष्ठ ४४

संबंधित प्रश्न

सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


निम्नलिखित को सिद्ध कीजिए:

`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 -  x)sin (pi/4  - y) =  sin (x + y)`


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


निम्नलिखित को सिद्ध कीजिए:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


निम्नलिखित को सिद्ध कीजिए:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


निम्नलिखित को सिद्ध कीजिए:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


निम्नलिखित को सिद्ध कीजिए:

cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1


सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos  x/2  cos  (3x)/2`


यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।


`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।


tan75° - cot75° का मान है।


cos12° + cos84° + cos156° + cos132° का मान है।


यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।


sin50° - sin70° + sin10° का मान बराबर है -

यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

θ का एक मान, जो समीकरण sin4θ - 2sin2θ - 1 = 0 को संतुष्ट करता है, तथा 0 और 2π के बीच में स्थित होता है।

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×