हिंदी

यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।

योग

उत्तर

ज्ञात है कि cotθ + tanθ = 2cosecθ

⇒ `costheta/sintheta + sintheta/costheta = 2/sintheta`

⇒ `(cos^2theta + sin^2theta)/(sintheta cos theta) = 2/sintheta`

⇒ 2sinθ cosθ = sinθ

θ का सामान्य मान ज्ञात कीजिए,

2sinθ cosθ - sinθ = 0

⇒ sinθ(2cosθ - 1) = 0

जान लेते है कि,

sinθ ≠ 0 या 2cosθ - 1 = 0

⇒ `costheta = 1/2`

⇒ `costheta = cos  pi/3`

⇒ `theta = 2npi ± pi/3`

अतः, सामान्य मान `θ = 2nπ ± π/3` है।

सामान्य मान `θ = 2nπ ± π/3` है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 17. | पृष्ठ ५४

संबंधित प्रश्न

सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


मान ज्ञात कीजिए: sin 75°


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`


निम्नलिखित को सिद्ध कीजिए:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos  x/2  cos  (3x)/2`


यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


sin(45° + θ) - cos(45° - θ) का मान है।


sin50° - sin70° + sin10° का मान बराबर है -

यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -


यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×