हिंदी

यदि k = πππsin(π18)sin(5π18)sin(7π18) है, तो k का संख्यात्मक मान ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।

रिक्त स्थान भरें

उत्तर

विस्तृत करने पर k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`

∴ k = sin10°. sin50°. sin70°

⇒ k = sin10° . sin(90° – 40°) . sin(90° – 20°)

ज्ञात है कि, `sin(π/2−θ)=cosθ`

∴ k = `sin10^circ.cos40^circ.cos20^circ`

⇒ k = `sin10^circ. 1/2[2cos40^circ. cos20^circ]`

2cosA cosB − cos(A − B) + cos(A + B) का उपयोग करने पर,

​∴ k = sin10° ⋅ `1/2`[cos(40° + 20°) + cos(40° − 20°)]

⇒ k = `1/2`sin10°[cos60° + cos20°]

= `1/2sin10°(1/2 + cos20°)`

= `1/4sin10^circ + 1/4(2sin10^circ ⋅ cos20^circ)​`

2sinA cosB = [sin(A + B) + sin(A − B)] का उपयोग करने पर,

​∴ k = `1/4 sin10^circ + 1/4[sin(10^circ + 20^circ) + sin(10^circ − 20^circ)]`

k = `1/4sin10^circ + 1/4 sin30^circ − 1/4sin10^circ`

= `1/4sin30^circ`

= `1/8`​

यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान `bbunderline(1/8)` है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 61. | पृष्ठ ५९

संबंधित प्रश्न

सिद्ध कीजिए `2 sin^2  pi/6 + cosec^2  (7pi)/6 cos^2  pi/3 = 3/2`


सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


निम्नलिखित को सिद्ध कीजिए:

`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


निम्नलिखित को सिद्ध कीजिए:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`


यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।

[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


sin(45° + θ) - cos(45° - θ) का मान है।


cos12° + cos84° + cos156° + cos132° का मान है।


यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -


यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos  θ/2` का मान बराबर है -


यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -


यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -


यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×