हिंदी

Sin50∘sin130∘ का मान ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

`(sin 50^circ)/(sin 130^circ)` का मान ______ है।

रिक्त स्थान भरें

उत्तर

विस्तृत करने पर `(sin50^circ)/(sin130^circ)`

∴ `(sin50^circ)/(sin130^circ) = (sin50^circ)/(sin(180^circ − 50^circ))`

ज्ञात है कि, sin(π - θ) = sinθ

​∴ `(sin50​^circ)/(sin130​^circ) = (sin50​^circ)/(sin50​^circ)`

⇒ `(sin50​^circ)/(sin130​^circ) = 1`​

`(sin 50^circ)/(sin 130^circ)` का मान 1 है।

shaalaa.com
त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 60. | पृष्ठ ५९

संबंधित प्रश्न

यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।


tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।


sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।


यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।


यदि tan θ = `(-4)/3` है, तो sinθ है


sinx cosx का अधिकतम मान है:


यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।

संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`


यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`


सिद्ध कीजिए कि cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin7θ sin8θ है।

`["संकेत:"  "L.H.S." = 1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2] "के रूप में व्यक्त कीजिए।"]`


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


यदि f(x) = cos2x + sec2x है, तो ______

[संकेत: A.M ≥ G.M.]


यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA −  5cosA + sinA का मान है -


cos248° – sin212° का मान है -

[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:

C1 C2
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos(x + y) cos(x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×