Advertisements
Advertisements
प्रश्न
यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`
`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`
उत्तर
`(sin(theta + 2alpha))/sintheta = m/n` को अभिव्यक्त करने पर और योगांतरानुपात प्रमेय का उपयोग करने पर,
`(sin(theta + 2alpha) + sintheta)/(sintheta - sintheta) = (m + n)/(m - n)`
लागू करने पर,
`[(sinA + sinB = 2sin (A + B)/2 . cos (A - B)/2),(sinA - sinB = 2cos (A + B)/2 . sin (A - B)/2)]`
= `(2sin((theta + 2alpha + theta)/2).cos((theta + 2alpha - theta)/2))/(2cos((theta + 2alpha + theta)/2).sin((theta + 2alpha - theta)/2)) = (m + n)/(m - n)`
= `(sin(theta + alpha).cosalpha)/(cos(theta + alpha).sinalpha) = (m + n)/(m - n)`
= `tan(theta + alpha)cotalpha = (m + n)/(m - n)`
यह सिद्ध किया गया है कि, `tan(theta + alpha)cotalpha = (m + n)/(m - n)`
APPEARS IN
संबंधित प्रश्न
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)` का मान ज्ञात कीजिए।
यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
यदि tan θ = `(-4)/3` है, तो sinθ है
sinx cosx का अधिकतम मान है:
स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:
C1 | C2 |
(a) `(1 - cosx)/sinx` | (i) `cot^2 x/2` |
(b) `(1 + cosx)/(1 - cosx)` | (ii) `cot x/2` |
(c) `(1 + cosx)/sinx` | (iii) `|cos x + sin x|` |
(d) `sqrt(1 + sin 2x)` | (iv) `tan x/2` |
सिद्ध कीजिए कि `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।
यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।
[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]
यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।
यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।
यदि f(x) = cos2x + sec2x है, तो ______
[संकेत: A.M ≥ G.M.]
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |