हिंदी

यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cot α = m+nm-n संकेत:लिखकर योगांतरानुपात का प्रयोग कीजिए।[संकेत:sin(θ+2α)sinθ=mnलिखकर योगांतरानुपात का प्रयोग कीजिए।] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`

प्रमेय

उत्तर

`(sin(theta + 2alpha))/sintheta = m/n` को अभिव्यक्त करने पर और योगांतरानुपात प्रमेय का उपयोग करने पर,

`(sin(theta + 2alpha) + sintheta)/(sintheta - sintheta) = (m + n)/(m - n)`

लागू करने पर,

`[(sinA + sinB = 2sin  (A + B)/2 . cos  (A - B)/2),(sinA - sinB = 2cos  (A + B)/2 . sin  (A - B)/2)]`

= `(2sin((theta + 2alpha + theta)/2).cos((theta + 2alpha - theta)/2))/(2cos((theta + 2alpha + theta)/2).sin((theta + 2alpha - theta)/2)) = (m + n)/(m - n)`

= `(sin(theta + alpha).cosalpha)/(cos(theta + alpha).sinalpha) = (m + n)/(m - n)`

= `tan(theta + alpha)cotalpha = (m + n)/(m - n)`

यह सिद्ध किया गया है कि, `tan(theta + alpha)cotalpha = (m + n)/(m - n)`

shaalaa.com
त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 3. | पृष्ठ ५२

संबंधित प्रश्न

यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।


यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


यदि tan θ = `(-4)/3` है, तो sinθ है


sinx cosx का अधिकतम मान है:


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


यदि f(x) = cos2x + sec2x है, तो ______

[संकेत: A.M ≥ G.M.]


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।


निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:

C1 C2
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos(x + y) cos(x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×