हिंदी

Tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।

योग

उत्तर

हमें प्राप्त है: tan 9° – tan 27° – tan 63° + tan 81°

= tan 9° + tan 81° – tan 27° – tan 63°

= tan 9° + tan (90° – 9°) – tan 27° – tan (90° – 27°)

= tan 9° + cot 9° – (tan 27° + cot 27°)   .....(1)

साथ ही, tan 9° + cot 9° = `1/(sin 9^circ cos 9^circ) = 2/sin18^circ`  .....(2)

इसी प्रकार, tan 27° + cot 27° = `1/(sin 27^circ cos 27^circ)` 

= `2/sin54^circ`

= `2/cos36^circ`  .....(3)

(2) और (3) का (1) में प्रयोग करने पर, हमें प्राप्त है:

tan 9° – tan 27° – tan 63° + tan 81° = `2/(sin18^circ) - 2/(cos36^circ)`

= `(2 xx 4)/(sqrt(5) - 1)`

= `(2 xx 4)/(sqrt(5) + 1)`

= 4

shaalaa.com
त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - हल किये हुए उदाहरण [पृष्ठ ४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
हल किये हुए उदाहरण | Q 5 | पृष्ठ ४१

संबंधित प्रश्न

यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।


यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।


यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।


cos248° – sin212° का मान है -

[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


यदि sinx + cosx = a, तो |sinx - cosx| = ______


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।


निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:

C1 C2
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos(x + y) cos(x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×