Advertisements
Advertisements
प्रश्न
यदि sinx + cosx = a, तो |sinx - cosx| = ______
उत्तर
समझें कि दी गई अभिव्यक्ति है sinx + cosx = a
दोनों पक्षों को वर्ग,
∴ sin2x + cos2x + 2sinx cosx = a2
⇒ 1 + 2sinx cosx = a2
⇒ sinx cosx = `(a^2 - 1)/2`
गणना |sinx - cosx|
∴ |sinx - cosx|2 = sin2x + cos2x - 2sinx cosx
⇒ |sinx - cosx|2 = `1 - 2((a^2 - 1)/2)`
⇒ |sinx - cosx|2 = 2 - a2
⇒ |sinx - cosx|2 = `sqrt(2 - a^2)`
APPEARS IN
संबंधित प्रश्न
यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)` का मान ज्ञात कीजिए।
यदि tan θ = `(-4)/3` है, तो sinθ है
sinx cosx का अधिकतम मान है:
सिद्ध कीजिए कि `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`
`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`
यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।
[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि
व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।
यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।
व्यंजक `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8` का मान ज्ञात कीजिए।
[संकेत: व्यंजक `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]` के रूप में सरल कीजिए।
यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______
यदि f(x) = cos2x + sec2x है, तो ______
[संकेत: A.M ≥ G.M.]
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
cos248° – sin212° का मान है -
[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]
यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
यदि sinx + cosx = a, तो sin6x + cos6x = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |