हिंदी

यदि tanA=1−cosBsinB, तो tan2A = ______. - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.

रिक्त स्थान भरें

उत्तर

विस्तृत करने पर, tan A = `(1 - cos "B")/sin"B"`

ज्ञात है कि, tan2A = `(2tan"A")/(1 - tan^2"A")`

∴ tan2A = `(2((1 - cos "B")/sin"B"))/(1 - ((1 - cos "B")/sin"B")^2`

⇒ tan2A = `(2((2sin^2  "B"/2)/(2sin  "B"/2 cos  "B"/2)))/(1 - ((2sin^2  "B"/2)/(2sin  "B"/2 cos  "B"/2))^2`

= `(2tan  B/2)/(1 - tan^2  B/2)`

= tanB

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
अध्याय 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 62. | पृष्ठ ५९

संबंधित प्रश्न

सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


मान ज्ञात कीजिए: sin 75°


निम्नलिखित को सिद्ध कीजिए:

`(cos (pi + x) cos (-x))/(sin(pi - x) cos (pi/2 + x)) =  cot^2 x`


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


निम्नलिखित को सिद्ध कीजिए:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


निम्नलिखित को सिद्ध कीजिए:

cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1


निम्नलिखित को सिद्ध कीजिए:

cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1


सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।

[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।


यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


tan3A - tan2A - tanA बराबर है।


sin(45° + θ) - cos(45° - θ) का मान है।


यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।


`sin  pi/10 sin  (13pi)/10` का मान है - 

[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]


sin50° - sin70° + sin10° का मान बराबर है -

यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


`sin  π/18 + sin  π/9 + sin  (2π)/9 + sin  (5π)/18`

का मान निम्नलिखित है -


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि cosecx = 1 + cotx, तो x = 2nπ, 2nπ + `π/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×