Advertisements
Advertisements
प्रश्न
निम्नलिखित को सिद्ध कीजिए:
`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`
उत्तर
हम जानते है की,
बायाँ पक्ष = `(cos9x - cos5x)/(sin17x - sin 3x)`
= `(-2sin ((9x + 5x)/2) sin ((9x - 5x)/2))/(2cos((17x+3x)/2) sin((17x - 3x)/2))`
= `(-2sin7xsin2x)/(2cos10xsin7x)`
= `(-sin2x)/(cos10x)` = दायाँ पक्ष।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`
निम्नलिखित को सिद्ध कीजिए:
sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
sin26x – sin24x = sin 2x sin 10x.
निम्नलिखित को सिद्ध कीजिए:
`(sin x - sin 3x)/(sin^2 x - cos^2 x) = 2sin x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
tan75° - cot75° का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`