Advertisements
Advertisements
प्रश्न
यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -
पर्याय
1
2
-2
परिभाषित नहीं
उत्तर
2
स्पष्टीकरण:
जान लेते है कि, α + β = `π/4`
∴ tan(α + β) = `tan π/4`
दो कोणों के जोड के त्रिकोणमितीय फल का उपयोग करने पर,
∴ `(tanα + tanβ)/(1 − tanα tanβ) = 1`
⇒ tanα + tanβ = 1 − tanα tanβ
⇒ tanα + tanβ + tanα tanβ = 1
⇒ 1 + tanα + tanβ + tanα tanβ = 1 + 1
विस्तृत करने पर,
⇒ 1(1 + tanα) + tanβ(1 + tanα) = 2
⇒ (1 + tanα)(1 + tanβ)
= 2
सही पर्याय 2 है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
मान ज्ञात कीजिए: sin 75°
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
यदि α और β समीकरण a tan θ + b sec θ = c के मूल हैं, तो सिद्ध कीजिए कि tan (α + β) = `(2ac)/(a^2 - c^2)` है।
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
`(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` का मान है।
tan3A - tan2A - tanA बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
का मान निम्नलिखित है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanA = `(1−cosB)/sinB` है , तो tan2A = tanB
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।