Advertisements
Advertisements
प्रश्न
का मान निम्नलिखित है -
पर्याय
`sin (7pi)/18 + sin (4pi)/9`
1
`cos pi/6 + cos (3pi)/7`
`cos pi/9 + sin pi/9`
उत्तर
`bbunderline(sin (7pi)/18 + sin (4pi)/9)`
स्पष्टीकरण:
जान लेते है कि, दी गई अभिव्यक्ती `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18` है।
∴ `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = (sin (5pi)/18 + sin pi/18) + (sin (2pi)/9 + sin pi/9)`
सर्वसमिका के जोड का उपयोग करने पर,
∴ `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = 2sin (((5pi)/18 + pi/18)/2) . cos (((5pi)/18 - pi/18)/2) + 2sin (((2pi)/9 + pi/9)/2).cos(((2pi)/9 - pi/9)/2)`
= `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = 2sin pi/6.cos pi/9 + 2sin pi/6. cos pi/18`
= `2 xx 1/2 cos pi/9 + 2 xx 1/2 cos pi/18`
= `cos pi/9 + cos pi/18`
विस्तृत करने पर,
= `sin pi/18 + sin pi/9 + sin (2pi)/9 + sin (5pi)/18 = sin (7pi)/18 + sin (8pi)/18`
= `sin (7pi)/18 + sin (4pi)/9`
सही पर्याय `sin (7pi)/18 + sin (4pi)/9` है।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `sin^2 pi/6 + cos^2 pi/3 - tan^2 π/4 = - 1/2`
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
मान ज्ञात कीजिए tan 15°
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
सिद्ध कीजिए: `(cos x - cosy)^2 + (sin x - sin y)^2 = 4 sin^2 (x - y)/2`
यदि sinθ और cosθ समीकरण ax2 – bx + c = 0 के मूल हैं, तो a, b और c निम्नलिखित संबंध को संतुष्ट करते हैं:
यदि sin(θ + α) = a और sin(θ + β) = b है, तो सिद्ध कीजिए कि cos2(α − β) − 4ab cos(α − β) = 1 − 2a2 − 2b2 है।
[संकेत: cos(α − β) = cos{(θ + α) − (θ + β) लिखिए।]}
यदि cos(θ + Φ) = mcos(θ - Φ) है, तो सिद्ध कीजिए कि `tantheta = (1 - m)/(1 + m) cotphi` है।
[संकेत: `(cos(theta + phi))/(cos(theta - phi)) = m/1` के रूप में व्यक्त कर योगांतरानुपात का प्रयोग कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
tan3A - tan2A - tanA बराबर है।
cos12° + cos84° + cos156° + cos132° का मान है।
यदि `tanA = 1/2, tanB = 1/3` है, तो tan(2A + B) का मान बराबर है।
यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos θ/2` का मान बराबर है -
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
यदि `tanA = (1 − cosB)/sinB`, तो tan2A = ______.
एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।
[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
`cos (2pi)/15 cos (4pi)/15 cos (8pi)/15 cos (16pi)/15 = 1/16`
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tanθ + tan2θ + `sqrt3` tanθ tan2θ = `sqrt3`, तो θ = `(nπ)/3 + π/9`