Advertisements
Advertisements
प्रश्न
यदि tanα = `1/7` और tanβ = `1/3`, तो cos2α बराबर है -
पर्याय
sin2β
sin4β
sin3β
cos2β
उत्तर
sin4β
स्पष्टीकरण:
जान लेते है कि, दी गई अभिव्यक्ती `tanα = 1/7` और `tanβ = 1/3`
त्रिकोणमितीय सूत्र जिनमें दोहरे कोण सर्वसमिकाएँ है का उपयोग करने पर: `cos2A = (1 − tan^2A)/(1 + tan^2A)`
∴ cos2α = `(1 − tan^2alpha)/(1 + tan^2alpha)`
= `48/50`
= `24/25`
त्रिकोणमितीय सूत्र जिनमें दोहरे कोण सर्वसमिकाएँ है का उपयोग करने पर: tan2A = `(2tanA)/(1 - tan^2A)`
∴ tan2β = `(2tanbeta)/(1 - tan^2beta)`
= tan2β = `(2 xx 1/3)/(1 - 1/9)`
= `2/3 xx 9/8`
= `3/4`
त्रिकोणमितीय सूत्र जिनमें दोहरे कोण सर्वसमिकाएँ हैं का उपयोग करने पर:
sin2A = `(2tanA)/(1 + tan^2A)`
∴ `sin4beta = (2tan2beta)/(1 + tan^2beta)`
= `sin4beta = (2 xx 3/4)/(1 + (3/4)^2)`
= `3/2 xx 16/25`
= `24/25`
देखते हैं कि, `cos2α = sin4β = 24/25`
सही पर्याय sin4β है।APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए: `2 sin^2 (3pi)/4 + 2 cos^2 pi/4 + 2 sec^2 pi/3 = 10`
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
`(tan(pi/4 + x))/(tan(pi/4 - x)) = ((1+ tan x)/(1- tan x))^2`
निम्नलिखित को सिद्ध कीजिए:
`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
sin 2x + 2 sin 4x + sin 6x = 4 cos2 x sin 4x
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x
सिद्ध कीजिए: `((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos 7x + cos 5x) + (cos 9x + cos 3x)) = tan 6x`
सिद्ध कीजिए: sin 3x + sin 2x – sin x = 4sin x ` cos x/2 cos (3x)/2`
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि cotθ + tanθ = 2cosecθ है, तो θ का व्यापक मान ज्ञात कीजिए।
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
`sin pi/10 sin (13pi)/10` का मान है -
[संकेत: `sin18^circ = (sqrt5 - 1)/4` और `cos36^circ = (sqrt5 + 1)/4` प्रयोग कीजिए।]
अंतराल [0, 2π] में स्थित समीकरण tanx + secx = 2cosx के हलों की संख्या है -
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।