Advertisements
Advertisements
प्रश्न
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
स्पष्टीकरण:
जान लेते है कि, tan(π cosθ) = cot(π sinθ)
∴ tan(π cosθ) = `tan(pi/2 - pi sin theta)`
⇒ π cosθ = `pi/2 - pi sin theta`
⇒ cosθ + sinθ = `1/2`
⇒ `1/sqrt(2) cos theta + 1/sqrt(2) sin theta = 1/(2sqrt(2))`
दो कोणों के जोड और बीच के अंतर का त्रिकोणमितीय फल का उपयोग करने पर,
∴ `cos pi/4 cos theta + sin pi/4 sin theta = 1/(2sqrt(2))`
⇒ `cos(theta - pi/4) = +- 1/(2sqrt(2))`
यह कथन सत्य है अर्थात, यदि `tanθ + tan2θ + sqrt(3) tanθ tan2θ = sqrt3`, तब `cos(θ − π/4) = ±1/(2sqrt2)`।
APPEARS IN
संबंधित प्रश्न
सिद्ध कीजिए `2 sin^2 pi/6 + cosec^2 (7pi)/6 cos^2 pi/3 = 3/2`
सिद्ध कीजिए: `cot^2 pi/6 + cosec (5pi)/6 + 3 tan^2 pi/6 = 6`
निम्नलिखित को सिद्ध कीजिए:
`cos (pi/4 xx x) cos (pi/4 - y) - sin (pi/4 - x)sin (pi/4 - y) = sin (x + y)`
निम्नलिखित को सिद्ध कीजिए:
cos2 2x – cos2 6x = sin 4x sin 8x
निम्नलिखित को सिद्ध कीजिए:
cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)
निम्नलिखित को सिद्ध कीजिए:
`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`
निम्नलिखित को सिद्ध कीजिए:
`(sin x + sin 3x)/(cos x + cos 3x) = tan 2x`
निम्नलिखित को सिद्ध कीजिए:
`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`
निम्नलिखित को सिद्ध कीजिए:
cot x cot 2x – cot 2x cot 3x – cot 3x cot x = 1
निम्नलिखित को सिद्ध कीजिए:
`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`
निम्नलिखित को सिद्ध कीजिए:
cos 4x = 1 – 8 sin2 x cos2x
निम्नलिखित को सिद्ध कीजिए:
cos 6x = 32 cos6x – 48 cos4x + 18 cos2x – 1
यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।
[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]
यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।
समीकरण tanθ = -1 और `cosθ = 1/sqrt2` को संतुष्ट करने वाले θ का उभयनिष्ठ व्यापक मान ज्ञात कीजिए।
यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।
`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta) "और" sin2theta = (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`
यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।
यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।
`cot(pi/4 + theta)cot(pi/4 - theta)` का मान है।
यदि sinθ + cosθ = 1 है, तो sin2θ का मान बराबर है -
यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos θ/2` का मान बराबर है -
का मान निम्नलिखित है -
यदि tanθ = `a/b` है, तो bcos2θ + asin2θ बराबर है -
यदि k = `sin(π/18)sin((5π)/18)sin((7π)/18)` है, तो k का संख्यात्मक मान ______ है।
फलन `y = sqrt3sinx + cosx` के आलेख पर स्थित किसी बिंदु की x-अक्ष से अधिकतम दूरी ______ है।