मराठी

यदि sinθ = −45 है और θ तीसरे चतुर्थांश में स्थित है, तो θcos θ2 का मान बराबर है - - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि sinθ = `(−4)/5` है और θ तीसरे चतुर्थांश में स्थित है, तो `cos  θ/2` का मान बराबर है -

पर्याय

  • `1/5`

  • `-1/sqrt10`

  • `-1/sqrt5`

  • `1/sqrt10`

MCQ

उत्तर

`bbunderline(-1/sqrt5)`

स्पष्टीकरण:

जान लेते है कि, दी गई अभिव्यक्ती `sinθ = −4/5` है जो तीसरे चतुर्थांश में है।

मौलिक त्रिकोणमितीय सर्वसामिका का उपयोग करने पर,

∴ `cosθ = sqrt(1−sin^2θ)`

⇒ cosθ = `sqrt(1−(−4/5)^2)`
= `sqrt(9/25)`

= `(+3)/(−5)`

देख सकते हैं कि `cosθ = −3/5` तीसरे चतुर्थांश में है,

∴ `cosθ = 2cos^2  θ/2 - 1`

⇒ `−3/5=2cos^2  θ/2 − 1`
⇒ `cos  θ/2 = ±1/sqrt5`

⇒ `cos  θ/2 = −1/sqrt5 ​[∵ π/2 < θ/2 < (3π)/4]`

सही पर्याय `-1/sqrt5` है।

shaalaa.com
दो कोणों के योग और अंतर का त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 52. | पृष्ठ ५८

संबंधित प्रश्‍न

सिद्ध कीजिए:  `cot^2  pi/6 + cosec (5pi)/6 + 3 tan^2  pi/6 = 6`


सिद्ध कीजिए: `2 sin^2  (3pi)/4 + 2 cos^2  pi/4  + 2 sec^2  pi/3 = 10`


मान ज्ञात कीजिए: sin 75°


मान ज्ञात कीजिए  tan 15°


निम्नलिखित को सिद्ध कीजिए:

 `cos ((3pi)/ 2 + x ) cos(2pi + x) [cot ((3pi)/2 - x) + cot (2pi + x)] = 1`


निम्नलिखित को सिद्ध कीजिए:

sin (n + 1)x sin (n + 2)x + cos (n + 1)x cos (n + 2)x = cos x.


निम्नलिखित को सिद्ध कीजिए:

`cos ((3pi)/4 + x) - cos((3pi)/4 - x) = -sqrt2 sin x`


निम्नलिखित को सिद्ध कीजिए:

cot 4x (sin 5x + sin 3x) = cot x (sin 5x – sin 3x)


निम्नलिखित को सिद्ध कीजिए:

`(cos9x - cos5x)/(sin17x - sin 3x) = - (sin2x)/(cos 10x)`


निम्नलिखित को सिद्ध कीजिए:

`(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x`


निम्नलिखित को सिद्ध कीजिए:

`(sin x - siny)/(cos x + cos y)= tan  (x -y)/2`


निम्नलिखित को सिद्ध कीजिए:

`(sin x - sin 3x)/(sin^2 x - cos^2 x) =  2sin x`


निम्नलिखित को सिद्ध कीजिए:

`(cos 4x + cos 3x + cos 2x)/(sin 4x + sin 3x + sin 2x) = cot 3x`


निम्नलिखित को सिद्ध कीजिए:

`tan 4x = (4tan x(1 - tan^2 x))/(1 - 6tan^2 x + tan^4 x)`


निम्नलिखित को सिद्ध कीजिए:

cos 4x = 1 – 8 sin2 x cos2x


सिद्ध कीजिए: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x


यदि `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)` है, तो सिद्ध कीजिए कि `tanx/tany = a/b` है।

[संकेत: योगांतरानुपात का प्रयोग कीजिए।]


यदि tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)` है, तो सिद्ध कीजिए कि sinα + cosα = `sqrt(2)` cosθ है।

[संकेत: व्यक्त कीजिए: tanθ = tan`(α - π/4) θ = α - π/4`]


यदि sinθ + cosθ = 1 है, तो θ का व्यापक मान ज्ञात कीजिए।


यदि acos2θ + bsin2θ = c के मूल α और β हैं, तो सिद्ध कीजिए कि tanα + tanβ = `(2b)/(a + c)` है।

`["संकेत: सर्वसमिकाओं" cos2theta = (1 - tan^2theta)/(1 + tan^2theta)  "और"  sin2theta =  (2tantheta)/(1 + tan^2theta) "का प्रयोग कीजिए।"]`


यदि tanθ = `1/2` और tanΦ = `1/3` है, तो θ + ϕ का मान है।


यदि tanα = `m/(m+1)`, और tanβ = `1/(2m + 1)` है, तो α + β बराबर है।


tan3A - tan2A - tanA बराबर है।


यदि `α + β = π/4` है, तो (1 + tanα)(1 + tanβ) का मान बराबर है -


अंतराल [0, 2π] में स्थित समीकरण tanx + secx  = 2cosx के हलों की संख्या है -


एक त्रिभुज ABC, जिसमें ∠C = 90° के लिए वह समीकरण, जिसके मूल tanA और tanB हैं, ______ होगा।

[संकेत: A + B = 90° ⇒ tanA tanB = 1 और tanA + tanB = `2/(sin 2A)`]


प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

यदि tan(π cosθ) = cot(π sinθ) है, तो `cos(θ − π/4) = ±1/(2sqrt2)` है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×