English

यदि x = secϕ - tanϕ और y = cosecϕ + cotϕ है, तो सिद्ध कीजिए कि xy + x - y + 1 = 0 है। [संकेत: Find xy + 1 ज्ञात कीजिए और फिर सिद्ध कीजिए कि x, y = -(xy + 1) है।] - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि x = secϕ - tanϕ और y = cosecϕ + cotϕ है, तो सिद्ध कीजिए कि xy + x - y + 1 = 0 है।

[संकेत: Find xy + 1 ज्ञात कीजिए और फिर सिद्ध कीजिए कि x, y = -(xy + 1) है।]

Theorem

Solution

ज्ञात है कि, x = secϕ - tanϕ और y = cosecϕ + cotϕ

सिद्ध करें कि, xy + x - y + 1 = 0

L.H.S. और `sin2theta = (2tan^2theta)/(1 + tan^2theta)` लेने पर

= xy + x - y + 1

= (secϕ - tanϕ)(cosecϕ + cotϕ) + (secϕ - tanϕ) - (cosecϕ + cotϕ) + 1

= `(1/cosphi - sinphi/cosphi) (1/sinphi + cosphi/sinphi) + (1/cosphi - sinphi/cosphi) - (1/sinphi + cosphi/sinphi) + 1`

= `((1 - sin phi)/cos phi) ((1 + cos phi)/sinphi) + ((1 - sin phi)/cosphi) - ((1 + cosphi)/sinphi) + 1`

L.C.M. लेकर हल करने पर,

= `((1 - sinphi + cosphi - sinphicosphi)/(cosphisinphi)) + ((sinphi - sin^2phi - cosphi - cos^2phi)/(cosphisinphi)) + 1`

= `((1 - sinphi + cosphi - sinphicosphi + sinphi - sin^2phi - cosphi - cos^2phi + cosphisinphi)/(cosphisinphi))`

= `(1 - 1)/(cosphisinphi)`

= 0

यह सिद्ध है कि xy + x - y + 1 = 0।

shaalaa.com
त्रिकोणमितीय समीकरण
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 24. | Page 55

RELATED QUESTIONS

निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए

`tan x = sqrt3`


निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए

sec x = 2


निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए

cot x = – `sqrt3`


cosec x = -2 का व्यापक हल ज्ञात कीजिए


समीकरण का व्यापक हल ज्ञात कीजिए क्योंकि cos 4 x = cos 2 x


समीकरण cos 3x + cos x - cos 2x = 0 का व्यापक हल ज्ञात कीजिए


sin 2x + cos x = 0 समीकरण का सामान्य हल ज्ञात कीजिए


समीकरण sin x + sin 3x + sin 5x = 0 का सामान्य हल ज्ञात कीजिए


सिद्ध कीजिए कि 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α


यदि a cosθ + b sinθ = m और a sinθ - b cosθ = n है, तो सिद्ध कीजिए कि a2 + b2 = m2 + n2  है।


यदि 2sin2θ = 3cosθ है, जहाँ 0 ≤ θ ≤ 2π है, तो θ का मान ज्ञात कीजिए।


यदि secx cos5x + 1 = 0 है, जहाँ 0 < x ≤ `π/2` है, तो x का मान ज्ञात कीजिए।


समीकरण 5cos2θ + 7sin2θ - 6 = 0 का व्यापक हल ज्ञात कीजिए।


समीकरण sinx - 3sin2x + sin3x = cosx - 3cos2x + cos3x का व्यापक हल ज्ञात कीजिए।


समीकरण `(sqrt3−1) cosθ + (sqrt3 + 1)sinθ = 2` का व्यापक हल ज्ञात कीजिए।

[संकेत: `sqrt3−1 = rsinα, sqrt3 + 1 = rcosα` रखिए, जिससे tanα = `tan(π/4 − π/6) α = π/12` प्राप्त होता है।]

समीकरण `(sqrt(3) - 1)costheta + (sqrt(3) + 1)sin theta` = 2 का व्यापक हल ज्ञात कीजिए।

[संकेत: `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα रखिए, जिससे tanα = `tan(pi/4 - pi/6)` α = `pi/12` प्राप्त होता है।]


3cosx + 4sinx + 8 का न्यूनतम मान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×