English

निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए cot x = – 3 - Mathematics (गणित)

Advertisements
Advertisements

Question

निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए

cot x = – `sqrt3`

Sum

Solution

`cot x = - sqrt3 ⇒ tan x = - 1/sqrt3 =  - tan  pi/6` 

= `tan (pi - pi/6) = tan  (5pi)/6`

= `tan (2pi - pi/6) = tan  (11pi)/6`

`x  "के मुख्य मान" = (5pi)/6, (11pi)/6`

`x  " का व्यापक मान " npi  ± (5pi)/6, n ∈ Z `

shaalaa.com
त्रिकोणमितीय समीकरण
  Is there an error in this question or solution?
Chapter 3: त्रिकोणमितीय फलन - प्रश्नावली 3.4 [Page 86]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 3 त्रिकोणमितीय फलन
प्रश्नावली 3.4 | Q 3. | Page 86

RELATED QUESTIONS

निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए

sec x = 2


cosec x = -2 का व्यापक हल ज्ञात कीजिए


समीकरण का व्यापक हल ज्ञात कीजिए क्योंकि cos 4 x = cos 2 x


समीकरण cos 3x + cos x - cos 2x = 0 का व्यापक हल ज्ञात कीजिए


sin 2x + cos x = 0 समीकरण का सामान्य हल ज्ञात कीजिए


निम्नलिखित में से प्रत्येक समीकरण का व्यापक हल ज्ञात कीजिए

sec2 2x = 1 – tan 2x


समीकरण sin x + sin 3x + sin 5x = 0 का सामान्य हल ज्ञात कीजिए


`cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5` का मान है;


यदि a cosθ + b sinθ = m और a sinθ - b cosθ = n है, तो सिद्ध कीजिए कि a2 + b2 = m2 + n2  है।


यदि 2sin2θ = 3cosθ है, जहाँ 0 ≤ θ ≤ 2π है, तो θ का मान ज्ञात कीजिए।


यदि secx cos5x + 1 = 0 है, जहाँ 0 < x ≤ `π/2` है, तो x का मान ज्ञात कीजिए।


यदि x = secϕ - tanϕ और y = cosecϕ + cotϕ है, तो सिद्ध कीजिए कि xy + x - y + 1 = 0 है।

[संकेत: Find xy + 1 ज्ञात कीजिए और फिर सिद्ध कीजिए कि x, y = -(xy + 1) है।]


समीकरण 5cos2θ + 7sin2θ - 6 = 0 का व्यापक हल ज्ञात कीजिए।


समीकरण sinx - 3sin2x + sin3x = cosx - 3cos2x + cos3x का व्यापक हल ज्ञात कीजिए।


समीकरण `(sqrt3−1) cosθ + (sqrt3 + 1)sinθ = 2` का व्यापक हल ज्ञात कीजिए।

[संकेत: `sqrt3−1 = rsinα, sqrt3 + 1 = rcosα` रखिए, जिससे tanα = `tan(π/4 − π/6) α = π/12` प्राप्त होता है।]

समीकरण `(sqrt(3) - 1)costheta + (sqrt(3) + 1)sin theta` = 2 का व्यापक हल ज्ञात कीजिए।

[संकेत: `sqrt(3) - 1` = r sinα, `sqrt(3) + 1` = r cosα रखिए, जिससे tanα = `tan(pi/4 - pi/6)` α = `pi/12` प्राप्त होता है।]


3cosx + 4sinx + 8 का न्यूनतम मान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×