Advertisements
Advertisements
Question
सिद्ध कीजिए कि 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α
Solution
L.H.S = 2 sin2 β + 4 cos (α + β) sin α sin β + cos 2(α + β)
= 2 sin2β + 4(cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β)
= 2 sin2β + 4 sin α cos α sin β cos β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β
= 2 sin2 β + sin 2α sin 2β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β
= (1 – cos 2β) – (2 sin2α) (2 sin2β) + cos 2α cos 2β
= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β
= cos 2α = R.H.S.
APPEARS IN
RELATED QUESTIONS
निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए
`tan x = sqrt3`
निम्नलिखित समीकरण का मुख्य तथा व्यापक हल ज्ञात कीजिए
sec x = 2
cosec x = -2 का व्यापक हल ज्ञात कीजिए
समीकरण का व्यापक हल ज्ञात कीजिए क्योंकि cos 4 x = cos 2 x
समीकरण cos 3x + cos x - cos 2x = 0 का व्यापक हल ज्ञात कीजिए
sin 2x + cos x = 0 समीकरण का सामान्य हल ज्ञात कीजिए
निम्नलिखित में से प्रत्येक समीकरण का व्यापक हल ज्ञात कीजिए
sec2 2x = 1 – tan 2x
समीकरण sin x + sin 3x + sin 5x = 0 का सामान्य हल ज्ञात कीजिए
`cos pi/5 cos (2pi)/5 cos (4pi)/5 cos (8pi)/5` का मान है;
यदि a cosθ + b sinθ = m और a sinθ - b cosθ = n है, तो सिद्ध कीजिए कि a2 + b2 = m2 + n2 है।
यदि 2sin2θ = 3cosθ है, जहाँ 0 ≤ θ ≤ 2π है, तो θ का मान ज्ञात कीजिए।
यदि secx cos5x + 1 = 0 है, जहाँ 0 < x ≤ `π/2` है, तो x का मान ज्ञात कीजिए।
यदि x = secϕ - tanϕ और y = cosecϕ + cotϕ है, तो सिद्ध कीजिए कि xy + x - y + 1 = 0 है।
[संकेत: Find xy + 1 ज्ञात कीजिए और फिर सिद्ध कीजिए कि x, y = -(xy + 1) है।]
समीकरण 5cos2θ + 7sin2θ - 6 = 0 का व्यापक हल ज्ञात कीजिए।
समीकरण sinx - 3sin2x + sin3x = cosx - 3cos2x + cos3x का व्यापक हल ज्ञात कीजिए।
समीकरण `(sqrt3−1) cosθ + (sqrt3 + 1)sinθ = 2` का व्यापक हल ज्ञात कीजिए।