Advertisements
Advertisements
Question
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
Options
sin2(θ + Φ)
cos2(θ + Φ)
sin2(θ – Φ)
cos2(θ – Φ)
Solution
cos2(θ + Φ)
स्पष्टीकरण:
जान लेते है कि, दी गई अभिव्यक्ती cos2θ.cos2ϕ + sin2(θ - ϕ) -sin2(θ + ϕ) है।
त्रिकोणमितीय फल के सूत्र का उपयोग करने पर,
= cos2θ.cos2ϕ + sin2(θ - ϕ) - sin2(θ + ϕ) = cos2θ.cos2ϕ - sin2θ.sin2ϕ
= cos(2θ + 2ϕ)
= cos2(θ + ϕ)
सही पर्याय cos2(θ + ϕ) है।
APPEARS IN
RELATED QUESTIONS
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)` का मान ज्ञात कीजिए।
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
sinx cosx का अधिकतम मान है:
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`
`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`
यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।
[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]
सिद्ध कीजिए कि cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin7θ sin8θ है।
`["संकेत:" "L.H.S." = 1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2] "के रूप में व्यक्त कीजिए।"]`
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।
[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]
व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।
यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।
व्यंजक `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8` का मान ज्ञात कीजिए।
[संकेत: व्यंजक `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]` के रूप में सरल कीजिए।
यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______
यदि f(x) = cos2x + sec2x है, तो ______
[संकेत: A.M ≥ G.M.]
यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।
यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA − 5cosA + sinA का मान है -
cos248° – sin212° का मान है -
[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
यदि sinx + cosx = a, तो sin6x + cos6x = ______
यदि sinx + cosx = a, तो |sinx - cosx| = ______
प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।
समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |