Advertisements
Advertisements
Question
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)` का मान ज्ञात कीजिए।
Solution
हम लिखते हैं:
`(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (5pi)/8)(1 + cos (7pi)/8)`
= `(1 + cos pi/8)(1 + cos (3pi)/8)(1 + cos (pi - (3pi)/8))(1 + cos(pi - pi/8))`
= `(1 - cos^2 pi/8)(1 - cos^2 (3pi)/8)`
= `sin^2 pi/8 sin^2 (3pi)/8`
= `1/4 (1 - cos pi/4)(1 - cos (3pi)/4)`
= `1/4 (1 - cos pi/4)(1 + cos pi/4)`
= `1/4 (1 - cos^2 pi/4)`
= `1/4(1 - 1/2)`
= `1/8`
APPEARS IN
RELATED QUESTIONS
यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।
यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ
tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।
यदि x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)` हो, तो xy + yz + zx का मान ज्ञात कीजिए।
`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।
यदि tan θ = `(-4)/3` है, तो sinθ है
sinx cosx का अधिकतम मान है:
सिद्ध कीजिए कि `(tanA + secA - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`
यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।
संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`
यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।
सिद्ध कीजिए कि cosθ `cos theta/2 - cos 3theta cos (9theta)/2` = sin7θ sin8θ है।
`["संकेत:" "L.H.S." = 1/2[2costheta cos theta/2 - 2 cos 3theta cos (9theta)/2] "के रूप में व्यक्त कीजिए।"]`
[संकेत: मान लीजिए कि θ = 45° है। अत: `tan theta/2 = (sin theta/2)/(cos theta/2) = (2sin theta/2 cos theta/2)/(2cos^2 theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।
सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।
यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि
यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।
व्यंजक `cos^4 pi/8 + cos^4 (3pi)/8 + cos^4 (5pi)/8 + cos^4 (7pi)/8` का मान ज्ञात कीजिए।
[संकेत: व्यंजक `2(cos^4 pi/8 + cos^4 (3pi)/8) = 2[(cos^2 pi/8 + cos^2 (3pi)/8)^2 - 2cos^2 pi/8 cos^2 (3pi)/8]` के रूप में सरल कीजिए।
यदि sinθ + cosecθ = 2, तो sin2θ + cosec2θ बराबर है ______
यदि f(x) = cos2x + sec2x है, तो ______
[संकेत: A.M ≥ G.M.]
cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।
[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]
cos248° – sin212° का मान है -
[संकेत: cos2A – sin2 B = cos(A + B) cos(A – B) का प्रयोग कीजिए।]
`(sin 50^circ)/(sin 130^circ)` का मान ______ है।
निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:
C1 | C2 |
(a) sin(x + y) sin(x – y) | (i) cos2x – sin2y |
(b) cos(x + y) cos(x – y) | (ii) `(1 - tan theta)/(1 + tan theta)` |
(c) `cot(pi/4 + theta)` | (iii) `(1 + tan theta)/(1 - tan theta)` |
(d) `tan(pi/4 + theta)` | (iv) sin2x – sin2y |