मराठी

स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए: C1 C2 (a) 1-cosxsinx (i) cot2 x2 (b) 1+cosx1-cosx (ii) cot x2 (c) 1+cosxsinx (iii) |cosx+sinx| (d) 1+sin2x - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`
जोड्या लावा/जोड्या जुळवा

उत्तर

C1 C2
(a) `(1 - cosx)/sinx` (i) `tan  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii)  `cot^2  x/2`
(c) `(1 + cosx)/sinx` (iii) `cot  x/2`
(d) `sqrt(1 + sin 2x)` (iv) `|cos x + sin x|`

स्पष्टीकरण:

(a) `(1 - cos x)/sinx = (2sin^2  x/2)/(2sin  x/2 cos  x/2) = tan  x/2`

अतः, (a) का सही मिलान (iv) से होगा, जिसे (a) ↔(iv) से व्यक्त किया जाएगा:

(b) `(1 + cosx)/(1 - cosx) = (2cos^2  x/2)/(2sin^2  x/2) = cot^2  x/2` है।

अतः, (b) का सही मिलान (i) से होगा, अर्थात् (b) ↔(i) है।

(c) `(1 + cosx)/sinx = (2cos^2  x/2)/(2sin  x/2 cos  x/2) = cot  x/2` है।

अतः, (c) का सही मिलान (ii) से होगा, अर्थात् (c) ↔(ii) है।

(d) `sqrt(1 + sin2x) = sqrt(sin^2x + cos^2x + 2sinx cos x)`

= `sqrt((sinx + cosx)^2`

= |(sin x + cos x)|

अतः, (d) का सही मिलान (iii) से होगा, अर्थात् (d) ↔(iii) है।

shaalaa.com
त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - हल किये हुए उदाहरण [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
हल किये हुए उदाहरण | Q 22 | पृष्ठ ५१

संबंधित प्रश्‍न

यदि θ के सभी मानों के लिए A = cos2θ + sin4θ हो तो सिद्ध कीजिए कि `3/4` ≤ A ≤ 1 है।


`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


यदि θ दूसरे चतुर्थांश में स्थित है, तो दशाईए कि `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ


tan 9° – tan 27° – tan 63° + tan 81° का मान ज्ञात कीजिए।


सिद्ध कीजिए कि `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


यदि `(2sinalpha)/(1 + cosalpha + sinalpha)` = y है, तो सिद्ध कीजिए कि `(1 - cosalpha + sinalpha)/(1 + sinalpha)` भी y के बराबर है।

संकेतः व्यक्त कीजिएः `(1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) . (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)`


यदि tanx = `b/a` है, तो `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))` का मान ज्ञात कीजिए।


यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`


यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।

[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]


सिद्ध कीजिए कि cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin7θ sin8θ है।

`["संकेत:"  "L.H.S." = 1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2] "के रूप में व्यक्त कीजिए।"]`


tan22°30' का मान ज्ञात कीजिए।

[संकेत: मान लीजिए कि θ = 45° है। अत: `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)` का प्रयोग कीजिए।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि A दुसरे चतुर्थांश में स्थित है तथा 3tanA + 4 = 0, तो 2cotA −  5cosA + sinA का मान है -


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


यदि sinx + cosx = a, तो sin6x + cos6x = ______


यदि sinx + cosx = a, तो |sinx - cosx| = ______


x > 0 दिया रहने पर, f(x) = `−3cossqrt(3+x+x^2)` के मान अंतराल ______ में स्थित हैं।

प्रश्न में बताइए कि कथन सत्य है या असत्य, साथ ही इसका औचित्य भी दीजिए।

समिका sinA + sin2A + sin3A = 3 के कुछ वास्तविक मानों के लिए सत्य है।


निम्नलिखित में स्तंभ C1 में लिखे प्रत्येक व्यंजक को स्तंभ C2 में दिए सही उत्तरों से सही मिलान कीजिए:

C1 C2
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos(x + y) cos(x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×