मराठी

यदि cos(α + β) = 45 और sin(α - β) = 513 है; जहाँ α, 0 और ππ4 के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए। [संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि cos(α + β) = `4/5` और sin(α - β) = `5/13` है; जहाँ α, 0 और `π/4` के बीच स्थित है; तो tan2α का मान ज्ञात कीजिए।

[संकेत: tan2α को tan(α + β + α - β) के रूप में व्यक्त कीजिए।]

सिद्धांत

उत्तर

tan(α + β) और tan(α - β) का मान ज्ञात कीजिए

निम्न आरेख में देख सकते हैं,

∵ cos(α + β) = `4/5`

∴ tan(α + β) = `3/4`

∵ sin(α - β)  = `5/13`

∴ tan(α - β) = `5/12`

tan2α को tan(α + β + α – β) के रूप मे अभिव्यक्त करने पर

tan2α = tan(α + β + α – β)

= tan[(α + β) + (α – β)]

= tan(A + B) = `(tanA + tanB)/(1 - tanA.tanB)` लागू करने पर

tan2α = `(tan(alpha + beta) + tan(alpha - beta))/(1 - tan(alpha + beta)tan(alpha - beta))`

= `(3/4 + 5/12)/(1 - 3/4 xx 5/12)`

LCM लेने पर,

tan2α = `((9 + 5)/12)/((48 - 15)/48)`

= `14/12 xx 48/33`

= `56/33`

आवश्यक मान tan 2α = `56/33`.

shaalaa.com
त्रिकोणमितीय फलन
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: त्रिकोणमितीय फलन - प्रश्नावली [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 11
पाठ 3 त्रिकोणमितीय फलन
प्रश्नावली | Q 4. | पृष्ठ ५३

संबंधित प्रश्‍न

`sqrt(3)` cosec 20° – sec 20° का मान ज्ञात कीजिए।


sin θ + sin 3θ + sin 5θ = 0 को हल कीजिए।


`(1 + cos  pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)` का मान ज्ञात कीजिए।


यदि कोण θ को ऐसे भागों में विभाजित किया जाता है कि एक भाग का tangent दूसरे भाग के tangent का k गुना है, तथा इन भागों का अंतर φ है, तो सिद्ध कीजिए कि sinθ = `(k + 1)/(k - 1) sinφ`


`sqrt(3)` cos θ + sin θ = `sqrt(2)` को हल कीजिए।


यदि tan θ = `(-4)/3` है, तो sinθ है


sinx cosx का अधिकतम मान है:


स्तंभ C1 में दिए प्रत्येक प्रविष्ट की स्तंभ C2 में दी गई प्रविष्टियों से मिलान कीजिए:

C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`

सिद्ध कीजिए कि `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`


यदि m sinθ = n sin(θ + 2α) है, तो सिद्ध कीजिए कि tan(θ + α)cotα = `(m + n)/(m - n)`

`["संकेत:" (sin(theta + 2alpha))/sintheta = m/n "लिखकर योगांतरानुपात का प्रयोग कीजिए।"]`


सिद्ध कीजिए कि cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin7θ sin8θ है।

`["संकेत:"  "L.H.S." = 1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2] "के रूप में व्यक्त कीजिए।"]`


सिद्ध कीजिए कि sin4A = 4sinA cos3A - 4cosA sin3A है।


यदि tanθ + sinθ = m और tanθ - sinθ = n हो, तो सिद्ध कीजिए कि m2 - n2 = 4sinθ tanθ है।

[संकेत: m + n = 2tanθ, m - n = 2sinθ है। तो m2 - n2 = (m + n) (m - n) का प्रयोग कीजिए।]


यदि tan(A + B) = p और tan(A - B) = q है, तो सिद्ध कीजिए कि

tan2A = `(p + q)/(1 - pq)` है। [संकेत: 2A = (A + B) + (A - B) का प्रयोग कीजिए]

यदि cosα + cosβ = 0 = sinα + sinβ है, तो सिद्ध कीजिए कि cos2α + cos2β = -2cos(α + β) है।

[संकेत: (cosα + cosβ)2 − (sinα + sinβ)2 = 0 है।]

व्यंजक `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]` का मान ज्ञात कीजिए।


यदि θ प्रथम चतुर्थांश में स्थित है तथा `costheta = 8/17` है, तो cos(30° + θ) + cos(45° - θ) + cos(120° - θ) का मान ज्ञात कीजिए।


व्यंजक `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8` का मान ज्ञात कीजिए।

[संकेत: व्यंजक `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]` के रूप में सरल कीजिए।


यदि tanθ = 3 है और θ तीसरे चतुर्थांश में स्थित है, तो sinθ का मान है।


cos2θ cos2Φ + sin2(θ - Φ) - sin2(θ + Φ) बराबर है।

[संकेत: sin2A - sin2B = sin(A + B) sin(A - B) का प्रयोग कीजिए।]


यदि x की सभी वास्तविक मान के लिए, `cosθ = x + 1/x` है, तो ______


`(sin 50^circ)/(sin 130^circ)` का मान ______ है।


यदि sinx + cosx = a, तो sin6x + cos6x = ______


यदि sinx + cosx = a, तो |sinx - cosx| = ______


x > 0 दिया रहने पर, f(x) = `−3cossqrt(3+x+x^2)` के मान अंतराल ______ में स्थित हैं।

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×