English

O(0, 0), A(3, 5) and B(−5, −3) are the vertices of triangle OAB. Find the equation of median of triangle OAB through vertex O. - Mathematics

Advertisements
Advertisements

Question

O(0, 0), A(3, 5) and B(−5, −3) are the vertices of triangle OAB. Find the equation of median of triangle OAB through vertex O.

Sum

Solution

Let the median through O meets AB at D.

So, D is the mid-point of AB.

Co-ordinates of point D are

`((3 - 5)/2, (5 - 3)/2) = (-1, 1)`

Slope of OD = `(1 - 0)/(-1 - 0) = -1`

(x1, y1) = (0, 0)

The equation of the median OD is

y – y1 = m(x – x1)

y − 0 = −1(x − 0)

x + y = 0

shaalaa.com
Simple Applications of All Co-ordinate Geometry.
  Is there an error in this question or solution?
Chapter 14: Equation of a Line - Exercise 14 (E) [Page 202]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 14 Equation of a Line
Exercise 14 (E) | Q 12.1 | Page 202

RELATED QUESTIONS

In the given figure ABCD is a rectangle. It consists of a circle and two semi-circles each of
which are of radius 5 cm. Find the area of the shaded region. Give your answer correct to
three significant figures


Use graph paper for this question (Take 2 cm = 1 unit along both x and y-axis). ABCD is a quadrilateral whose vertices are A(2, 2), B(2, –2), C(0, –1) and D(0, 1).

1) Reflect quadrilateral ABCD on the y-axis and name it as A'B'CD

2) Write down the coordinates of A' and B'.

3) Name two points which are invariant under the above reflection

4) Name the polygon A'B'CD


Using a graph paper, plot the points A(6, 4) and B(0, 4).

  1. Reflect A and B in the origin to get the images A' and B'.
  2. Write the co-ordinates of A' and B'.
  3. State the geometrical name for the figure ABA'B'.
  4. Find its perimeter.

A straight line passes through the points P(–1, 4) and Q(5, –2). It intersects the co-ordinate axes at points A and B. M is the mid-point of the segment AB. Find:

  1. The equation of the line.
  2. The co-ordinates of A and B.
  3. The co-ordinates of M.

(1, 5) and (–3, –1) are the co-ordinates of vertices A and C respectively of rhombus ABCD. Find the equations of the diagonals AC and BD.


O(0, 0), A(3, 5) and B(−5, −3) are the vertices of triangle OAB. Find the equation of altitude of triangle OAB through vertex B.


Point A and B have co-ordinates (7, −3) and (1, 9) respectively. Find:

  1. the slope of AB.
  2. the equation of perpendicular bisector of the line segment AB.
  3. the value of ‘p’ of (−2, p) lies on it.

Use a graph sheet for this question. 
Take 1 cm = 1 unit along both x and y axis.
(i) Plot the following points:
      A(0,5), B(3,0), C(1,0)  and  D(1,–5)
(ii) Reflect the points B, C and D on the y axis and name them as  B',C'andD' respectively.
(iii) Write down the coordinates of B',C 'and D'
(iv) Join the point A, B, C, D, D ', C ', B', A in order and give a name to the closed figure ABCDD'C'B


Without using distance formula, show that the points A(12,8), B(-2,6) and C(6,0) form a right-angled triangle.

Use a graph sheet for this question, take 2 cm = 1 unit along both x and y-axis:

  1. Plot the points A (3, 2) and B (5, 0). Reflect point A on the y-axis to A΄. Write co-ordinates of A΄.
  2. Reflect point B on the line AA΄ to B΄. Write the co-ordinates of B΄.
  3. Name the closed figure A’B’AB.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×