English

रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

Question

रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।

Sum

Solution

y – x = 0 और y + x = 0 बिंदु (0, 0) पर मिलते हैं।

x = k को y – x = 0 में रखने से, y – k = 0 या y = k

x – k = 0 और y – x = 0 बिंदु (k, k) पर मिलते हैं।

x = k को y + x = 0 में रखने से,

y + k = 0 या y = –k

x = k और y + x = 0 बिंदु (k, –k) पर मिलते हैं।

अब बिंदु (0, 0), (k, k) और (k, –k) से बने त्रिभुज का क्षेत्रफल

= `|1/2[0 xx (-2"k") + "k"(-"k") + "k" (-"k")]|`

= `|1/2 (-"k"^2 - "k"^2)|`

= k2 वर्ग इकाई।

दूसरी विधि: त्रिभुज OPQ का क्षेत्रफल

= 2 × क्षेत्रफल ∆OAP

= `2 xx [1/2 xx "k" xx "k"]`

=  k2 वर्ग इकाई।

shaalaa.com
रेखा के समीकरण के विविध रूप
  Is there an error in this question or solution?
Chapter 10: सरल रेखाएँ - अध्याय 10 पर विविध प्रश्नावली [Page 248]

APPEARS IN

NCERT Mathematics [Hindi] Class 11
Chapter 10 सरल रेखाएँ
अध्याय 10 पर विविध प्रश्नावली | Q 8. | Page 248

RELATED QUESTIONS

निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

x-अक्ष और y-अक्ष के समीकरण लिखिए।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

ढाल `1/2` और बिंदु (−4, 3) से जाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।


निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

बिंदुओं (−1, 1) और (2, –4) से जाते हुए।


उस रेखा का समीकरण ज्ञात कीजिए जिसकी मूल बिंदु से लांबिक दूरी 5 इकाई और लंब, धन x-अक्ष से 30° का कोण बनाती है।


रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:

∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।


(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।


एक रेखा (1, 0) तथा (2, 3) बिंदुओं को मिलाने वाली रेखा खंड पर लंब है तथा उसको 1 : n के अनुपात में विभाजित करती है। रेखा का समीकरण ज्ञात कीजिए।


एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।


बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।


मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।


किसी दूध भंडार का स्वामी प्रति सप्ताह 980 लिटर दूध, 14 रु. प्रति लिटर के भाव से और 1220 लिटर दूध 16 रु. प्रति लिटर के भाव से बेच सकता है। विक्रय मूल्य तथा मांग के मध्य के संबंध को रैखिक मानते हुए यह ज्ञात कीजिए कि प्रति सप्ताह वह कितना दूध 17 रु. प्रति लिटर के भाव से बेच सकता है?


अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।


अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

x – y = 4


θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।


यदि रेखाएँ y = 3x + 1 और 2y = x + 3, रेखा y = mx + 4, पर समान रूप से आनत हों तो m का मान ज्ञात कीजिए।


निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:

4x – 3y = 6


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

`x - sqrt3y + 8 = 0`


निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:

y – 2 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×