Advertisements
Advertisements
Question
किसी दूध भंडार का स्वामी प्रति सप्ताह 980 लिटर दूध, 14 रु. प्रति लिटर के भाव से और 1220 लिटर दूध 16 रु. प्रति लिटर के भाव से बेच सकता है। विक्रय मूल्य तथा मांग के मध्य के संबंध को रैखिक मानते हुए यह ज्ञात कीजिए कि प्रति सप्ताह वह कितना दूध 17 रु. प्रति लिटर के भाव से बेच सकता है?
Solution
x-अक्ष के साथ L (लीटर) और y-अक्ष के साथ R(रुपये) को मानते हुए, हमारे पास दो बिंदु (980, 14) और (1220, 16) हैं।
दो बिंदु रूप से, बिंदु (L, R) समीकरण को संतुष्ट करता है।
`"y" - 980 = (1220 - 980)/(16 - 14) (x - 14)`
= y - 980 = `240/2 (x - 14)`
y - 980 + 120 (x – 14)
अर्थात, y = 120 (x - 14) + 980
जब, x = Rs. 17/litre,
y = 120 (17 - 14) + 980
= y 120 × 3 + 980 = 360 + 980 = 1340
इस प्रकार, दूध भंडार का स्वामी 17 रु. प्रति लीटर की दर से साप्ताहिक 1340 लीटर दूध बेच सकता है।
APPEARS IN
RELATED QUESTIONS
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
x-अक्ष और y-अक्ष के समीकरण लिखिए।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।
रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंध को संतुष्ट करता है:
∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।
(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।
एक रेखा (1, 0) तथा (2, 3) बिंदुओं को मिलाने वाली रेखा खंड पर लंब है तथा उसको 1 : n के अनुपात में विभाजित करती है। रेखा का समीकरण ज्ञात कीजिए।
एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।
बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।
ताँबे की छड़ की लंबाई L (सेमी में) सेल्सियस ताप C का रैखिक फलन है। एक प्रयोग में यदि L = 124.942 जब C = 20 और L = 125.134 जब C = 110 हो, तो L को C के पदों में व्यक्त कीजिए।
अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।
रेखा के समीकरण की संकल्पना का प्रयोग करते हुए सिद्ध कीजिए कि तीन बिंदु (3, 0), (−2, −2) और (8, 2) संरेख हैं।
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
y = 0
निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:
3y + 2 = 0
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
x – y = 4
θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।
रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
6x + 3y – 5 = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
3x + 2y – 12 = 0
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
`x - sqrt3y + 8 = 0`