English

Ruler and Compass Only May Be Used in this Question. All Construction Lines and Arcs Must Be Clearly Shown, and Be of Sufficient Length and Clarity to Permit Assessment. (I) Construct - Mathematics

Advertisements
Advertisements

Question

Ruler and compass only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct Δ ABC, in which BC = 8 cm, AB = 5 cm, ∠ ABC = 60°.
(ii) Construct the locus of point inside the triangle which are equidistant from BA and BC.
(iii) Construct the locus of points inside the triangle which are equidistant from B and C.
(iv) Mark as P, the point which is equidistant from AB, BC and also equidistant from B and C.
(v) Measure and record the length of PB.

Sum

Solution

(i) Steps of Construction: 
1. Draw a line segment BC = 8 cm.
2. Make ∠CBX = 60°
3. Set off BA = 5 cm, along BX.
4. Join CA.
Then, ΔABC is the required triangle.
(ii) We know that the locus of point equidistant from two intersecting straight lines consist of a pair of straight lines that bisect the angles between the given straight lines.

Therefore in this case is the angle bisector of angle B, It is shown in the adjoining figure.
(iii) We know that the locus of a point equidistant from two fixed points is the right bisector of the straight line joining the two fixed points.

Therefore, in this case the right bisector of side BC of ΔABC. It is shown in the given figure.
(iv) The point P, is the point in intersecting of angle bisector of ∠ABC and the right bisector of BC.

It is shown in the following figure.

(v) On measuring we find the length of PB = 3 cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 14: Loci (Locus and its Constructions) - Figure Based Questions

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 14 Loci (Locus and its Constructions)
Figure Based Questions | Q 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Construct a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm. Find the points equidistant from AB and AC; and also 2 cm from BC. Measure the distance between the two points obtained. 


State the locus of a point in a rhombus ABCD, which is equidistant

  1. from AB and AD;
  2. from the vertices A and C.

AB and CD are two intersecting lines. Find a point equidistant from AB and CD, and also at a distance of 1.8 cm from another given line EF. 


In given figure 1 ABCD is an arrowhead. AB = AD and BC = CD. Prove th at AC produced bisects BD at right angles at the point M


Describe completely the locus of point in  the following cases: 

Midpoint of radii of a circle. 


Construct a triangle ABC, such that AB= 6 cm, BC= 7.3 cm and CA= 5.2 cm. Locate a point which is equidistant from A, B and C.


Use ruler and compasses only for this question. Draw a circle of radius 4 cm and mark two chords AB and AC of the circle of length f 6 cm and 5 cm respectively.
(i) Construct the locus of points, inside the circle, that are equidistant from A and C. Prove your construction.
(ii) Construct the locus of points, inside the circle, that are equidistant from AB and AC.


Without using set squares or protractor.
(i) Construct a ΔABC, given BC = 4 cm, angle B = 75° and CA = 6 cm.
(ii) Find the point P such that PB = PC and P is equidistant from the side BC and BA. Measure AP.


Use ruler and compasses only for the following questions:
Construct triangle BCP, when CB = 5 cm, BP = 4 cm, ∠PBC = 45°.
Complete the rectangle ABCD such that :
(i) P is equidistant from AB and BC and
(ii) P is equidistant from C and D. Measure and write down the length of AB.


Given ∠BAC (Fig), determine the locus of a point which lies in the interior of ∠BAC and equidistant from two lines AB and AC.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.