English

Show that for Any Sets a and B, a = (A Intersect B) Union (A – B) and a ∪ (B – A) = (A Union B) - Mathematics

Advertisements
Advertisements

Question

Show that for any sets A and B, A = (A ∩ B) ∪ (A – B) and A ∪ (B – A) = (A ∪ B)

Sum

Solution

To show: A = (A ∩ B) ∪ (A – B)

Let x ∈ A

We have to show that x ∈ (A ∩ B) ∪ (A – B)

Case I

x ∈ A ∩ B

Then, ∈ (A ∩ B) ⊂ (A ∪ B) ∪ (A – B)

Case II

x ∉ A ∩ B

⇒ ∉ A or ∉ B

∴ ∉ B [∉ A]

∴ ∉ A – B ⊂ (A ∪ B) ∪ (A – B)

∴ A ⊂ (A ∩ B) ∪ (A – B) … (1)

It is clear that

A ∩ B ⊂ A and (A – B) ⊂ A

∴ (A ∩ B) ∪ (A – B) ⊂ A … (2)

From (1) and (2), we obtain

A = (A ∩ B) ∪ (A – B)

To prove: A ∪ (B – A) ⊂ A ∪ B

Let ∈ A ∪ (B – A)

⇒ ∈ A or ∈ (B – A)

⇒ ∈ A or (∈ B and ∉ A)

⇒ (∈ A or ∈ B) and (∈ A or ∉ A)

⇒ ∈ (A ∪ B)

∴ A ∪ (B – A) ⊂ (A ∪ B) … (3)

Next, we show that (A ∪ B) ⊂ A ∪ (B – A).

Let ∈ A ∪ B

⇒ ∈ A or ∈ B

⇒ (∈ A or ∈ B) and (∈ A or ∉ A)

⇒ ∈ A or (∈ B and ∉ A)

⇒ ∈ A ∪ (B – A)

∴ A ∪ B ⊂ A ∪ (B – A) … (4)

Hence, from (3) and (4), we obtain A ∪ (B – A) = A ∪B.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Sets - Miscellaneous Exercise [Page 27]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 1 Sets
Miscellaneous Exercise | Q 8 | Page 27

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the union of the following pairs of sets:

A = {x : x is a natural number and multiple of 3}

B = {x : x is a natural number less than 6}


Find the union of the following pairs of sets:

A = {x : x is a natural number and 1 < x ≤ 6}

B = {x : x is a natural number and 6 < x < 10}


Find the union of the following pairs of sets:

A = {1, 2, 3}, B = Φ


Let A = {a, b}, B = {a, b, c}. Is A ⊂ B? What is A ∪ B?


If A and B are two sets such that A ⊂ B, then what is A ∪ B?


Is it true that for any sets A and B, P (A) ∪ P (B) = P (A ∪ B)? Justify your answer.


We have to find the smallest set A such that\[A \cup \left\{ 1, 2 \right\} = \left\{ 1, 2, 3, 5, 9 \right\}\] 


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identities: 

\[A \cup \left( B \cap C \right) = \left( A \cup B \right) \cap \left( A \cup C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B \cup C \right) = \left( A \cap B \right) \cup \left( A \cap C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B - C \right) = \left( A \cap B \right) - \left( A \cap C \right)\]


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie: 

\[A - \left( B \cup C \right) = A\left( A - B \right) \cap \left( A - C \right)\] 


Let A = {1, 2, 4, 5} B = {2, 3, 5, 6} C = {4, 5, 6, 7}. Verify the following identitie:

\[A \cap \left( B ∆ C \right) = \left( A \cap B \right) ∆ \left( A \cap C \right)\]


If A = {1, 2, 3, 4}, B = {3, 4, 5, 6}, C = {5, 6, 7, 8} and D = {7, 8, 9, 10}; find

A ∪ C


Observe the Venn diagram and write the given sets U, A, B, A ∪ B, A ∩ B.


Determine whether the following statement is true or false. Justify your answer.

For all sets A and B, (A – B) ∪ (A ∩ B) = A


Determine whether the following statement is true or false. Justify your answer.

For all sets A, B, and C, if A ⊂ B, then A ∩ C ⊂ B ∩ C


For all sets A and B, A ∪ (B – A) = A ∪ B


For all sets A and B, A – (A – B) = A ∩ B


For all sets A and B, A – (A ∩ B) = A – B


For all sets A and B, (A ∪ B) – B = A – B


If X and Y are two sets and X′ denotes the complement of X, then X ∩ (X ∪ Y)′ is equal to ______.


If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (B ∪ C)′ is ______.


If U = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, A = {1, 2, 3, 5}, B = {2, 4, 6, 7} and C = {2, 3, 4, 8}. Then (C – A)′ is ______.


Let S1 = `{x ∈ R - {1, 2}: ((x + 2)(x^2 + 3x + 5))/(-2 + 3x - x^2) ≥ 0}` and S2 = {x ∈ R : 32x – 3x+1 – 3x+2 + 27 ≤ 0}. Then, S1 ∪ S2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×