English

सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है।

Sum

Solution

क्योंकि A व्युत्क्मणीय आव्यूह है इसलिए |A| ≠ 0

हम जानते हैं कि |A| = |A′|

परंतु |A| ≠ 0

इसलिए |A′| ≠ 0 अर्थात्‌, A′ भी व्युत्करमणीय आव्यूह है।

हम जानते हैं कि AA–1 = A–1A = I

दोनों ओर आव्यूहों का परिवर्तन लेने पर हम पाते हैं

(A–1)′A′ = A′(A–1)′

= (I)′

= I

अत: (A–1)′ आव्यूह A′ का व्युत्क्रम है।

अर्थात्‌  (A′)–1 = (A–1)

shaalaa.com
सारणिक
  Is there an error in this question or solution?
Chapter 4: सारणिक - हल किए हुए उदाहरण [Page 70]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 4 सारणिक
हल किए हुए उदाहरण | Q 6 | Page 70

RELATED QUESTIONS

यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((0,1,2),(-1,0,-3),(-2,3,0))`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((2,-1,-2),(0,2,-1),(3,-5,0))`


यदि `"A" = [(1,1,2),(2,1,3),(5,4,9)],` हो तो `abs "A"` ज्ञात कीजिए।


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:


सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।


यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।


एक त्रिभुज ABC में यदि `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, तो सिद्ध कीजिए कि ∆ABC एक समद्विबाहु त्रिभुज है।


दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।


यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


यदि A = `[(x, 5, 2),(2, y, 3),(1, 1, z)]`, xyz = 80, 3x + 2y + 10z = 20, तब A adj. A = `[(81, 0, 0),(0, 81, 0),(0, 0, 81)]`


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1  ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.


यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c


यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है


सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______ 


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।


यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।


`|(0, xyz, x - z),(y - x, 0, y  z),(z - x, z - y, 0)|` = ______.


`("aA")^-1 = 1/"a"  "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×