English

यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = AABBCC|sin2AcotA1sin2BcotB1sin2CcotC1| = ______ - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______

Fill in the Blanks

Solution

यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = 0 है।

व्याख्या:

R2 → R2 – R1 तथा R3 → R3 – Rका प्रयोग कीजिए।

shaalaa.com
सारणिक
  Is there an error in this question or solution?
Chapter 4: सारणिक - हल किए हुए उदाहरण [Page 74]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 4 सारणिक
हल किए हुए उदाहरण | Q 12 | Page 74

RELATED QUESTIONS

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((2,4),(-5,-1))`


निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


निम्नलिखित सारणिक के मान ज्ञात कीजिए।

`abs ((0,1,2),(-1,0,-3),(-2,3,0))`


सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`


यदि Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ1 = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, तो सिद्ध कीजिए कि ∆ + ∆1 = 0


बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0


दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।


दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।


यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब 


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


θ का वह मान ज्ञात कीजिए जो `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0 को संतुष्ट करता हो।


यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c


सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______ 


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


`("aA")^-1 = 1/"a"  "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।


यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।


यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×