Advertisements
Advertisements
Question
यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
व्याख्या:
|3AB| = 33|AB|
= 27|A||B|
= 27 × 5 × 3 ......[∵ |KA| = Kn|A|]
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`
यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।
यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब
यदि A, B, C एक त्रिभुज के कोण हैं तब ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______
सारणिक `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` = 8
यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1
मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
यदि एक समबाहु त्रिभुज के शीर्ष (x1, y1), (x2, y2), (x3, y3) तथा त्रिभुज की भुजाओं की लंबाई ‘a’ है तो सिद्ध कीजिए कि `|(x_1, y_1, 1),(x_2, y_2, 1),(x_3, y_3, 1)|^2 = (3"a"^4)/4`
θ का वह मान ज्ञात कीजिए जो `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0 को संतुष्ट करता हो।
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
यदि a1, a2, a3, ..., ar G.P में हैं तो सिद्ध कौजिए कि सारणिक `|("a"_("r" + 1), "a"_("r" + 5), "a"_("r" + 9)),("a"_("r" + 7), "a"_("r" + 11), "a"_("r" + 15)),("a"_("r" + 11), "a"_("r" + 17), "a"_("r" + 21))|` r से स्वतंत्र है।
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।
यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि
सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है
यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।
`("aA")^-1 = 1/"a" "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।
|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।