Advertisements
Advertisements
प्रश्न
यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.
पर्याय
सत्य
असत्य
उत्तर
यह कथन सत्य है।
व्याख्या:
|3AB| = 33|AB|
= 27|A||B|
= 27 × 5 × 3 ......[∵ |KA| = Kn|A|]
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`
यदि `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-4,5),(1,1,-2),(2,3,1))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((0,1,2),(-1,0,-3),(-2,3,0))`
यदि `abs ((x, 2),(18, x)) = abs ((6,2),(18,6))` हो तो x बराबर है:
`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |
`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।
बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)`
यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।
एक त्रिभुज ABC में यदि `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, तो सिद्ध कीजिए कि ∆ABC एक समद्विबाहु त्रिभुज है।
मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`
सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0
θ का वह मान ज्ञात कीजिए जो `[(1, 1, sin3theta),(-4, 3, cos2theta),(7, -7, -2)]` = 0 को संतुष्ट करता हो।
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।
यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।
यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।
`("aA")^-1 = 1/"a" "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।
यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।
`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।