Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।
उत्तर
Δ = `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`
[C1 → C1 – C2 और C2 → C2 – C3 लागू करना]
Δ = `|("bc" - "a"^2 - "ca" + "b"^2,"ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2),("ca" - "b"^2 - "ab" + "c"^2, "ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2),("ab" - "c"^2 - "bc" + "a"^2, "bc" - "a"^2 - "ca" + "b"^2, "ca" - "b"^2)|`
= `|(("b" - "a")("a" + "b" + "c"), ("c" - "b")("a" + "b" + "c"), "ab" - "c"^2),(("c" - "b")("a" + "b" + "c"), ("a" - "c")("a" + "b" + "c"), "bc" - "a"^2),(("a" - "c")("a" + "b" + "c"), ("b" - "a")("a" + "b" + "c"), "ca" - "b"^2)|`
[C1 और C2 प्रत्येक से उभयनिष्ठ (a + b + c) लेना]
Δ = `("a" + "b" + "c")^2 |("b" - "a", "c" - "b", "ab" - "c"^2),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`
[R1 → R1 + R2 + R3 लागू करना]
Δ = `("a" + "b" + "c")^2 |(0, 0, "ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)),("c" - "b", "a" - "c", "bc" - "a"^2),("a" - "c", "b" - "a", "ca" - "b"^2)|`
[R1 के साथ विस्तार करना]
Δ = `("a" + "b" + "c")^2 ["ab" + "bc" + "ca" - ("a"^2 + "b"^2 + "c"^2)][("c" - "b")("b" - "a") - ("a" - "c")^2]`
= `("a" + "b" + "c")^2 ("ab" + "bc" + "ca" - "a"^2 - "b"^2 - "c"^2) xx ("bc" - "ac" - "b"^2 + "ab" - "a"^2 - "c"^2 + 2"ac")`
= (a + b + c)[(a + b + c)(a2 + b2 + c2 – ab – bc – ca)2]
अत: दिया गया सारणिक (a + b + c) से विभाज्य है और भागफल (a + b + c)(a2 + b2 + c2 – ab – bc – ca)2 है।
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
सिद्ध कीजिए कि सारणिक `[(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x)],` θ से स्वतंत्र है।
यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।
यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।
सारणिक `|(1, 1, 1),(""^"n""C"_1, ""^("n" + 2)"C"_1, ""^("n" + 4)"C"_1),(""^"n""C"_2, ""^("n" + 2)"C"_2, ""^("n" + 4)"C"_2)|` = 8
मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`
मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`
मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0
सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1 ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.
यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2` बराबर है।
यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?
'a' के ऐसे दो मान हैं जिनके लिए ∆ = `|(1, -2, 5),(2, "a", -1),(0, 4, 2"a")|` = 86, है तो इन दो संख्याओं का योग है।
यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।
`|(0, xyz, x - z),(y - x, 0, y z),(z - x, z - y, 0)|` = ______.
(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।
यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।
adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।
`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।