Advertisements
Advertisements
प्रश्न
यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
उत्तर
L.H.S. = `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")|`
[विस्तार]
= xa(a2yz – x2bc) – yb(y2ac – b2xz) + zc(c2xy – z2ab)
= xyza3 – x3abc – y3abc + b3xyz + c3xyz – z3abc
= xyz(a3 + b3 + c3) – abc(x3 + y3 + z3)
= xyz(a3 + b3 + c3) – abc(3xyz) .....[∵ x + y + z = 0 ⇒ x3 + y3 + z3 – 3xyz]
= xyz(a3 + b3 + c3 – 3abc)
= `xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`
APPEARS IN
संबंधित प्रश्न
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-1,-2),(0,0,-1),(3,-5,0))`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-4,5),(1,1,-2),(2,3,1))`
x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
यदि A = `[(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)]`, जहाँ 0 ≤ θ ≤ 2π हो तो ______.
यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।
सिद्ध कीजिए कि (A–1)′ = (A′)–1, जहाँ A एक व्युत्क्रमणीय आव्यूह है।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`
मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1 ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.
यदि A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, तो 8 ज्ञात कीजिए और इसका प्रयोग समीकरण निकाय y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17 को हल करने के लिए कौजिए।
सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है
सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।
यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक
`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।
यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि
सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है
यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______
|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।
यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।
`|(x + 1, x + 2, x + "a"),(x + 2, x + 3, x + "b"),(x + 3, x + 4, x + "c")|` = 0, जहाँ a, b, c, A.P में है।
यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।