Advertisements
Advertisements
प्रश्न
यदि a + b + c ≠ 0 और `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|` = 0, तो सिद्ध कीजिए कि a = b = c
उत्तर
चलो Δ = `|("a", "b","c"),("b", "c", "a"),("c", "a", "b")|`
[R1 → R1 + R2 + R3 लागू करना]
Δ = `|("a" + "b" + "c", "a" + "b" + "c", "a" + "b" + "c"),("b", "c", "a"),("c", "a", "b")|`
= `("a"+ "b" + "c")|(1, 1, 1),("b", "c", "a"),("c", "a", "b")|`
[C1 → C1 + C3 और C2 → C2 – C3 लागू करना]
Δ = `("a" + "b" + "c")|(0, 0,1),("b" - "a", "c" - "a", "a"),("c" - "b", "a" - "b", "b")|`
[R1 के साथ विस्तार करना]
= `("a" + "b" + "c")[1("b" - "a")("a" - "b") - ("c" - "a")("c" - "b")`
= `("a" + "b" + "c")("ba" - "b"^2- "a"^2 + "ab" - "c"^2 + "cb" + "ac" - "ab")`
= `-("a" + "b" + "c")("a"^2 + "b"^2 + "c"^2 - "ab" - "bc" - "ca")`
= `(-1)/2 ("a" + "b" + "c")[2"a"^2 + 2"b"^2 + 2"c"^2 - 2"ab" - 2"bc" - 2"ca"]`
= `-1/2 ("a" + "b" + "c")[("a"^2 + "b"^2 - 2"ab") + ("b"^2 + "c"^2 - 2"bc") + ("c"^2 + "a"^2 - 2"ac")]`
= `(-1)/2 ("a" + "b" + "c")[("a" - "b")^2 + ("b" - "c")^2 + ("c" - "a")^2]`
दिया गया है, Δ = 0
⇒ `(-1)/2 ("a" + "b" + "c")[("a" - "b")^2 + ("b" - "c")^2 + ("c" - "a")^2]` = 0
⇒ `("a" - "b")^2 + ("b" - "c")^2 + ("c" - "a")^2` = 0 ...[∵ a + b + c ≠ 0, दिया गया]
⇒ a – b = b – c = c – a = 0
⇒ a = b = c
APPEARS IN
संबंधित प्रश्न
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs((cos theta, -sin theta),(sin theta, cos theta))`
यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((0,1,2),(-1,0,-3),(-2,3,0))`
यदि `"A" = [(1,1,2),(2,1,3),(5,4,9)],` हो तो `abs "A"` ज्ञात कीजिए।
x के मान ज्ञात कीजिए यदि `abs ((2,3),(4,5)) = abs ((x, 3),(2x, 5))`
सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`
`[(x,y,x+y),(y,x+y,x),(x+y,x,y)]` का मान ज्ञात कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, तो x ज्ञात कीजिए।
यदि Δ = `|(0, "b" - "a", "c" - "a"),("a" - "b", 0, "c" - "b"),("a" - "c", "b" - "c", 0)|`, दो दिखाइए कि Δ = 0 है।
यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।
यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।
सारणिक ∆ = `|(cos(x + y), -sin(x + y), cos2y),(sinx, cosx, siny),(-cosx, sinx, cosy)|`, x से स्वतंत्र है।
यदि A = `[(0, 1, 3),(1, 2, x),(2, 3, 1)]`, A–1 = `[(1/2, -4, 5/2),(-1/2, 3, -3/2),(1/2, y, 1/2)]` तब x = 1, y = – 1
मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`
मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
सिद्ध कीजिए - `|(y^2z^2, yz, y + z),(z^2x^2, zx, z + x),(x^2y^2, xy, x + y)|` = 0
यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1 ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.
यदि A = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]`, तो A–1 ज्ञात कीजिए। A–1 का प्रयोग करके रैखिक समीकरणों के निकाय x – 2y = 10 , 2x – y – z = 8, –2y + z = 7 को हल कीजिए।
आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।
यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है
सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2` बराबर है।
यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि
यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।
यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।
एक सारणिक A की किसी पंक्ति के अवयवों और उनके संगत सहखंडों के गुणनफल का योग ______ के बराबर होता है।
`("aA")^-1 = 1/"a" "A"^-1` जहाँ a एक वास्तविक संख्या है और A एक वर्ग आव्यूह है।