मराठी

यदि x, y ∈ R, तब सारणिक ∆ = |cosx-sinx1sinxcosx1cos(x+y)-sin(x+y)0| किस अंतराल में है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।

पर्याय

  • `[-sqrt(2), sqrt(2)]`

  • [–1, 1]

  • `[-sqrt(2), 1]`

  • `[-1, -sqrt(2)]`

MCQ

उत्तर

सही उत्तर `[-sqrt(2), sqrt(2)]` है।

व्याख्या:

वास्तव में R3 → R3 – cosyR1 + sinyR2, के प्रयोग से हमें प्राप्त होता है

∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(0, 0, siny - cosy)|`

R3 के अनुदिश प्रसरण करने पर हम पाते हैं

∆ = (siny – cosy) (cos2x + sin2x)

= (siny – cosy)

= `sqrt(2)[1/sqrt(2) siny - 1/sqrt(2)  cosy]`

= `sqrt(2)[cos  pi/4  sin y - sin  pi/4  cos y]`

= `sqrt(2) sin(y - pi/4)`

इसलिए `-sqrt(2) ≤ ∆ ≤ sqrt(2)`.

shaalaa.com
सारणिक
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: सारणिक - हल किए हुए उदाहरण [पृष्ठ ७४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 4 सारणिक
हल किए हुए उदाहरण | Q 11 | पृष्ठ ७४

संबंधित प्रश्‍न

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs((cos  theta, -sin  theta),(sin  theta, cos  theta))`


निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs ((x^2 - x + 1, x - 1),(x + 1, x + 1))`


यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`


यदि  `A = [(1,0,1),(0,1,2),(0,0,4)]` हो, तो दिखाइए `abs (3 A) = 27 abs A`


यदि `"A" = [(1,1,2),(2,1,3),(5,4,9)],` हो तो `abs "A"` ज्ञात कीजिए।


सारणिक का प्रसरण किए बिना सिद्ध कीजिए कि `[(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)] = [(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)]`


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


`[(1,x,y),(1,x+y,y),(1,x,x+y)]` का मान ज्ञात कीजिए।


सारणिक ∆ = `|(sqrt(23) + sqrt(3), sqrt(5), sqrt(5)),(sqrt(15) + sqrt(46), 5, sqrt(10)),(3 + sqrt(115), sqrt(15), 5)|` ______


यदि A + B + C = 0, तो सिद्ध कीजिए कि `|(1, cos"c", cos"B"),(cos"C", 1, cos"A"),(cos"B", cos"A", 1)|` = 0


यदि `[(4 - x, 4 + x, 4 + x),(4 + x, 4 - x, 4 + x),(4 + x, 4 + x, 4 - x)]` = 0, तो x का मान ज्ञात कीजिए।


दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।


यदि A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` तो A–1  ज्ञात कीजिए और दर्शाइए कि A–1 = `("A"^2 - 3"I")/2`.


आव्यूह विधि से समीकरण निकाय 3x + 2y – 2z = 3, x + 2y + 3z = 6, 2x – y + z = 2 को हल कीजिए।


सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है


सारणिक `|("a" - "b", "b" + "c", "a"),("b" - "a", "c" + "a", "b"),("c" - "a", "a" + "b", "c")|` का मान है


एक त्रिभुज का क्षेत्रफल 9 वर्ग इकाई है जिसके शीर्ष (-3, 0), (3, 0) और (0, k) हैं तो k का मान होगा।


सारणिक `|("b"^2 - "ab", "b" - "c", "bc" - "ac"),("ab" - "a"^2, "a" - "b", "b"^2 - "ab"),("bc" - "ac", "c" - "a", "ab" - "a"^2)|` बराबर है।


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?


सारणिक `|(x , x + y, x + 2y),(x + 2y, x, x + y),(x + y, x + 2y, x)|` का मान है


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


यदि A एक 3 × 3 कोटि का आव्यूह है तब A के सारणिक के सभी उप-सारणिकों की संख्या ______ है।


|A–1| ≠ |A|–1, जहाँ व्युत्क्रमणीय आव्यूह है।


adj. A| = |A|2, जहाँ A एक कोटि 2 का वर्ग आव्यूह है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×