English

यदि Δ = apbqcr|apxbqycrz| = 16, है तब Δ1 = paapqbbqrccr|p+xa+xa+pq+yb+yb+qr+zc+zc+r| = 32 होगा। - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।

Options

  • सत्य

  • असत्य

MCQ
True or False

Solution

यह कथन सत्य है। 

व्याख्या:

यह देखते हुए कि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16

L.H.S. Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|`

C1 → C1 + C2 + C3

= `|("2p" + 2x + 2"a", "a" + x, "a" + "p"),(2"q" +2y + 2"b", "b" + y, "b" + "q"),(2"r" + 2z + 2"c", "c" + z, "c" + "r")|`

= `2|("p" + x + "a", "a" + x, "a" + "p"),("q" +y + "b", "b" + y, "b" + "q"),("r" + z + "c", "c" + z, "c" + "r")|`  ......[C1 से 2 सामान्य लेना]

C1 → C1 – C2 = `2|("p", "a" + x, "a" + "p"),("q", "b" + y, "b" + "q"),("r", "c" + z, "c" + "r")|`

C3 → C3 – C2d = `2|("p", "a" + x, "a"),("q", "b" + y, "b"),("r", "c" + z, "c")|`

Cको विभाजित करना

= `2|("p", "a", "a"),("q", "b", "b"),("r", "c", "c")| + 2|("p", x, "a"),("q", "y", "b"),("r", "z", "c")|`

= `2(0) + 2|("p", x, "a"),("q", y, "b"),("r", z, "c")|`

= `2|("p", x, "a"),("q", y, "b"),("r", z, "c")|`

⇒ `2|("a", "p", x),("b", "q", y),("c", "r", z)|`  ......(C1 ↔ C3 और C2 ↔ C3)

= 2 × 16

= 32

shaalaa.com
सारणिक
  Is there an error in this question or solution?
Chapter 4: सारणिक - प्रश्नावली [Page 83]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 4 सारणिक
प्रश्नावली | Q 57 | Page 83

RELATED QUESTIONS

निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।

`abs((cos  theta, -sin  theta),(sin  theta, cos  theta))`


x के मान ज्ञात कीजिए यदि `abs ((2,4),(5,1)) = abs ((2x, 4),(6, x))`


`[(cosalphacosbeta, cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalpha cosbeta,sinalphasinbeta,cosalpha)]` का मान ज्ञात कीजिए |


यदि a ≠ 0 हो तो समीकरण `[(x+a, x, x),(x, x + a, x),(x,x,x+a)] = 0` को हल कीजिए |


दर्शाइए कि Δ = `|(x, "p", "q"),("p", x, "q"),("q", "q", x)| = (x - "p")(x^2 + "p"x - 2"q"^2)` 


यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।


यदि ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`तथा ∆1 = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, तब 


मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`


मान निकालिए- `|(0, xy^2, xz^2),(x^2y, 0, yz^2),(x^2z, zy^2, 0)|`


मान निकालिए- `|(3x, -x + y, -x + z),(x - y, 3y, z - y),(x - z, y - z, 3z)|`


मान निकालिए- `|(x + 4, x, x),(x, x + 4, x),(x, x, x + 4)|`


सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz


दर्शाइए कि त्रिभुज ABC एक समद्विबाहु त्रिभुज है यदि सारणिक

Δ = `[(1, 1, 1),(1 + cos"A", 1 + cos"B", 1 + cos"C"),(cos^2"A" + cos"A", cos^2"B" + cos"B", cos^2"C" + cos"C")]` = 0


सिद्ध कीजिए कि `|("bc" - "a"^2, "ca" - "b"^2, "ab" - "c"^2),("ca" - "b"^2, "ab" - "c"^2, "bc" - "a"^2),("ab" - "c"^2, "bc" - "a"^2, "ca" - "b"^2)|`, a + b + c से विभाजित होता है। इसका भागफल भी ज्ञात कीजिए।


यदि x + y + z = 0, तो सिद्ध कीजिए कि `|(x"a", y"b", z"c"),(y"c", z"a", x"b"),(z"b", x"c", y"a")| = xyz|("a", "b", "c"),("c", "a", "b"),("b", "c", "a")|`


यदि `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, तब x का मान है


यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक

`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।


यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2`  बराबर है।


यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।


यदि A = `[(2, lambda, -3),(0, 2, 5),(1, 1, 3)]` तब A–1 का अस्तित्व है यदि


यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।


यदि x, y, z ∈ R, तब सारणिक `|((2x^2 + 2^(-x))^2, (2^x - 2^(-x))^2, 1),((3^x + 3^(-x))^2, (3^x -3^(-x))^2, 1),((4^x + 4^(-x))^2, (4^x - 4^(-x))^2, 1)|` बराबर है ______ ।


यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.


यदि A एक 3 × 3 कोटि का आव्यूह है तब (A2)–1 = ______.


यदि समीकरण |`|(x, 3, 7),(2, x, 2),(7, 6, x)|` = 0 का एक मूल x = – 9 है तब इसके अन्य दो मूल ______ हैं।


यदि f(x) = `|((1 + x)^17, (1 + x)^19, (1 + x)^23),((1 + x)^23, (1 + x)^29, (1 + x)^34),((1 +x)^41, (1 +x)^43, (1 + x)^47)|` = A + Bx + Cx2 + ..., है तब A = ______


यदि A और B कोटि 3 के आव्यूह हैं और |A| = 5, |B| = 3, तब |3AB| = 27 × 5 × 3 = 405.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×