Advertisements
Advertisements
Question
`|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|` का अधिकतम मान `1/2` है।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
व्याख्या:
मान लीजिए Δ = `|(1, 1, 1),(1, (1 + sintheta), 1),(1, 1, 1 + costheta)|`
C1 → C1 – C2, C2 → C2 – C3
= `|(0, 0, 1),(-sintheta, sintheta, 1),(0, -costheta, 1 + costheta)|`
C3 के साथ विस्तार करना
= `1|(-sintheta, sintheta),(0, -costheta)|`
= sin θ cos θ – 0
= sin θ cos θ
= `1/2 * 2 sin theta cos theta`
= `1/2 sin 2theta`
= `1/2 xx 1` ......[sin 2θ = 1 का अधिकतम मूल्य]
= `1/2`
APPEARS IN
RELATED QUESTIONS
निम्नलिखित प्रश्न में सारणिक का मान ज्ञात कीजिए।
`abs ((2,4),(-5,-1))`
यदि `A = [(1,2),(4,2)],` तो दिखाइए `abs(2 A) = 4 abs A`
निम्नलिखित सारणिक के मान ज्ञात कीजिए।
`abs ((3,-4,5),(1,1,-2),(2,3,1))`
बिना प्रसरण किए, दिखाइए कि Δ = `|("cosec"^2theta, cot^2theta, 1),(cot^2theta, "cosec"^2theta, -1),(42, 40, 2)|` = 0
यदि Δ = `|(x, 2, 3),(1, x, 1),(3, 2, x)|` = 0, का एक मूल x = – 4 हो तो अन्य दो मूलों को ज्ञात कीजिए।
दिखाइए कि यदि सारणिक ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0 है तब sinθ = 0 या `1/2` होगा।
यदि x, y ∈ R, तब सारणिक ∆ = `|(cosx, -sinx, 1),(sinx, cosx, 1),(cos(x + y), -sin(x + y), 0)|` किस अंतराल में है।
मान निकालिए- `|(x^2 - x + 1, x - 1),(x + 1, x + 1)|`
मान निकालिए- `|("a" + x, y, z),(x, "a" + y, z),(x, y, "a" + z)|`
मान निकालिए- `|("a" - "b" - "c", 2"a", 2"a"),(2"b", "b" - "c" - "a", 2"b"),(2"c", 2"c", "c" - "a" - "b")|`
सिद्ध कीजिए - `|(y + z, z, y),(z, z + x, x),(y, x, x + y)|` = 4xyz
सिद्ध कीजिए - `|("a"^2 + 2"a", 2"a" + 1, 1),(2"a" + 1, "a" + 2, 1),(3, 3, 1)| = ("a" - 1)^3`
दर्शाइए कि a के किसी भी मान के लिए बिंदु (a + 5, a – 4), (a – 2, a + 3) और (a, a) एक सरल रेखा में नहीं है।
यदि A = `[(2, 2, -4),(-4, 2, -4),(2, -1, 5)]`, B = `[(1, -1, 0),(2, 3, 4),(0, 1, 2)]`, तो 8 ज्ञात कीजिए और इसका प्रयोग समीकरण निकाय y + 2z = 7, x – y = 3, 2x + 3y + 4z = 17 को हल करने के लिए कौजिए।
अंतराल `pi/4 x ≤ pi/4` में सारणिक `|(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx, cosx, sinx)|` = 0 के विभिन्न वास्तविक मूलों की संख्या है।
यदि A, B और C एक त्रिभुज के कोण हैं तो सारणिक
`|(-1, cos"C", cos"B"),(cos"C", -1, cos"A"),(cos"B", cos"A", -1)|` बराबर है।
यदि /f(t) = `|(cos"t","t", 1),(2sin"t", "t", 2"t"),(sin"t", "t", "t")|`, तब `lim_("t" - 0) ("f"("t"))/"t"^2` बराबर है।
यदि θ एक वास्तविक संख्या है तब Δ = `|(1, 1, 1),(1, 1 + sin theta, 1),(1 + cos theta, 1, 1)|` का अधिकतम मान है।
यदि f(x) = `|(0, x - "a", x - "b"),(x + "b", 0, x - "c"),(x + "b", x + "c", 0)|`, तब
यदि A और B व्युत्क्रमणीय आव्यूह हैं तब निम्न में से कौन सा सत्य नहीं है?
यदि x, y, z में कोई भी शून्य नहीं है और `|(1 + x, 1, 1),(1, 1 + y, 1),(1, 1, 1 + z)|` = 0, है तब x–1 + y–1 + z–1 बराबर है।
यदि A एक 3 × 3 कोटि का आव्यूह है तो |3A| = ______
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तब |A–1 | = ______
यदि cos2θ = 0, तब `|(0, costheta, sin theta),(cos theta, sin theta,0),(sin theta, 0, cos theta)|^2` = ______.
एक सारणिक A की किसी पंक्ति के अवयवों और उनके संगत सहखंडों के गुणनफल का योग ______ के बराबर होता है।
(A3)–1 = (A–1)3, जहाँ A एक वर्ग आव्यूह है और |A| ≠ 0 है।
यदि तीन कोटि के एक सारणिक का मान 12 है तब इसके प्रत्येक अवयव को इसके सहखंड से बदलने पर प्राप्त सारणिक का मान 144 होगा।
यदि सारणिक `|(x + "a", "p" + "u", "l" + "f"),("y" + "b", "q" + "v", "m" + "g"),("z" + "c", "r" + "w", "n" + "h")|` को कोटि 3 के K सारणिकों में ऐसे विघटित किया जाए कि उनके प्रत्येक अवयव में केवल एक पद हो तब K का मान 8 है।
यदि Δ = `|("a", "p", x),("b", "q", y),("c", "r", z)|` = 16, है तब Δ1 = `|("p" + x, "a" + x, "a" + "p"),("q" + y, "b" + y, "b" + "q"),("r" + z, "c" + z, "c" + "r")|` = 32 होगा।