English

सिद्ध कीजिए कि x2 – y2 = c (x2 + y2)2 जहाँ c एक प्राचल है, अवकल समीकरण (x3 – 3x y2)dx = (y3 – 3x2y) dy का व्यापक हल है। - Mathematics (गणित)

Advertisements
Advertisements

Question

सिद्ध कीजिए कि x2 – y2 = c (x2 + y2)2 जहाँ c एक प्राचल है, अवकल समीकरण (x3 – 3x y2)dx = (y3 – 3x2y) dy का व्यापक हल है।

Sum

Solution

हमारे पास है, `dy/dx = (x^3 - 3xy^2)/(y^3 - 3x^2 y)`          ....(1)

y = vx रखने पर,

⇒ `dy/dx = v + x (dv)/dx`

∴ (1) बनने पर,

`v + x  (dv)/dx = (x^3 - 3x (v^2 x^2))/(v^3 x^3 - 3x^2 vx)`

`= (1 - 3v^2)/(v^3 - 3v)`

⇒ `x (dv)/dx = (1 - 3v^2)/(v^3 - 3v) - v`

`= (1 - 3v^2 - v^4 + 3v^2)/ (v^3 - 3v)`

`= (1 - v^4)/(v^3 - 3v)`

⇒ `(v^3 - 3v)/(1 - v^4)  dx = dx/x`

समाकलन करने पर, `int (v^3 - 3v)/ (1 - v^4) dv = int dx/x` + स्थिरांक           ....(2)

अब,

`I = int (v^3 - 3v)/ (1 - v^4)  dv`

`= int v^3/ (1 - v^4)  dv - 3 int v/ (1 - v^4)  dv`                 ....(3)

I = I1 - 3I2                             ....(4 )

जब `I = int v^3/(1 - v^4)  dv`

1 - v4 = t रखने पर,

⇒ -4v3 dv = dt

⇒ `v^3 dv = -dt/4`

∴ `I_1 = int (-1/4  dt)/t`

`= 1/4 int 1/t dt = -1/4 log |t| + C_1`

`= -1/4 log |1 - v^4| + C_1`

और `I_2 - int v/ (1 - v^4)  dv`

v2 = T रखने पर,

⇒ 2v = dT

⇒ `vdv = (dT)/2`

∴ `I_2 = int (1/2 dT)/ (1 - T^2)`

`= 1/2 int (dT)/(1^2 - T^2)`

`= 1/(2(2)) log |(1 + T)/(1 - T)| + C_2`

`= 1/4 log |(1 + v^2)/ (1 - v^2) + C_2|`

∴ (4) से हमें प्राप्त होता है,

`I = 1/4  log |1 - v^4|  -3/4  log |(1 +v^2)/(1 - v^2)| + C_1 + C_2`

(2) से, हमारे पास है

`- 1/4 log |1 - v^4| - 3/4  log |(1 + v^2)/ (1 - v^2)|= log |x| + log |C'|`

⇒ `-1/4 [log |1 - v^4| + 3 log |(1 + v^2)/(1 - v^2)|] = log |C'  x|`

⇒ `-1/4 [log |(1 - v^2) (1 + v^2) (1 + v^2)^3/(1 - v^2)^3|] = log |C'  x|`

⇒ `-1/4 [log |(1 + v^2)^4/(1 - v^2)^2|] = log |C'  x |`

⇒ `log | sqrt (1 - v^2)/ (1 + v^2)| = log |C'  x|`

⇒ `sqrt (1 - v^2)/ (1 + v^2) = C'  x`

⇒ `sqrt (1 - y^2/x^2)/(1 + y^2/x^2) = C'  x`

⇒ `sqrt (x^2 y^2) = C' (x^2 + y^2)`

दोनों पक्षों का वर्ग करने पर, हमें प्राप्त होता है।

`x^2 - y^2 = C (x^2 + y^2)^2`  जब  C'2 = C

अतः x2 - y2 = C (x2 + y2)2 व्यापक समाधान है।

shaalaa.com
दिए हुए व्यापक हल वाले अवकल समीकरण का निर्माण
  Is there an error in this question or solution?
Chapter 9: अवकल समीकरण - अध्याय 9 पर विविध प्रश्नावली [Page 436]

APPEARS IN

NCERT Mathematics - Part 1 and 2 [Hindi] Class 12
Chapter 9 अवकल समीकरण
अध्याय 9 पर विविध प्रश्नावली | Q 4. | Page 436

RELATED QUESTIONS

नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

`"x"/"a" + "y"/"b" = 1`


नीचे दिए गए प्रश्न में, स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y2 = a (b2 - x2)


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = ae3x + be-2x


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = e2x (a + bx)


नीचे दिए गए प्रश्न में स्वेच्छ अचरों a तथा b को विलुप्त करते हुए दिए हुए वक्रों के कुल को निरूपित करने वाला अवकल समीकरण ज्ञात कीजिए।

y = ex (a cos x + b sin x)


y - अक्ष को मूल बिंदु पर स्पर्श करने वाले वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए।


ऐसे अतिपरवलयों के कुल का अवकल समीकरण ज्ञात कीजिए जिनकी नाभियाँ x-अक्ष पर हैं तथा जिनका केंद्र मूल बिंदु है।


ऐसे वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए जिनका केंद्र y-अक्ष पर है और जिनकी त्रिज्या 3 इकाई है।


निम्नलिखित समीकरणों में से किस समीकरण का एक विशिष्ट हल y = x है?


(x – a)2 + 2y2 = a2 द्वारा निरूपित वक्रों के कुल का अवकल समी० निर्मित कीजिए जहाँ a एक स्वेच्छ अचर है।


प्रथम चतुर्थांश में ऐसे वृत्तों के कुल का अवकल समीकरण ज्ञात कीजिए जो निर्देशांक अक्षों को स्पर्श करते हैं।


अवकल समीकरण `dy/dx + sqrt((1 - y^2)/(1 - x^2))`= 0, जबकि x ≠ 1 का व्यापक हल ज्ञात कीजिए।


दर्शाइए कि अवकल समीकरण `dy/dx + (y^2 + y + 1)/(x^2 + x + 1)` = 0 का व्यापक हल (x + y + 1) = A(1 – x – y – 2xy) है, जिसमें A एक प्राचल है|


बिंदु `(0, π/4)` से गुजरने वाले एक ऐसे वक्र का समीकरण ज्ञात कीजिए जिसका अवकल समीकरण sin x cos y dx + cos x sin y dy = 0 है।


किसी गाँव की जनसंख्या की वृद्धि की दर किसी भी समय उस गाँव के निवासियों की संख्या के समानुपाती है। यदि सन् 1999 में गाँव की जनसंख्या 20,000 थी और सन् 2004 में 25,000 थी तो ज्ञात कीजिए कि सन् 2009 में गाँव की जनसंख्या क्या होगी?


`dx/dy + P_1 x = Q_1` के रूप वाले अवकल समीकरण का व्यापक हल है:


अवकल समीकरण exdy + (yex + 2x) dx = 0 का व्यापक हल है:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×