Advertisements
Advertisements
Question
Solve `9("x"^2 + 1/"x"^2) -3("x" - 1/"x") - 20 = 0`
Solution
`9[("x" - 1/"x")^2 + 2] -3 ("x" - 1/"x") - 20 = 0`
Let x - `1/"x" = "m"`
`9("m"^2 + 2) -3"m" -20 = 0`
`9"m"^2 + 18 - 3"m" - 20 = 0`
`9"m"^2 - 3"m" - 2 = 0`
9m2 - 6m + 3m - 2 = 0
3m (3m - 2) + 1(3m - 2) = 0
(3m - 2) (3m + 1) = 0
3m - 2 = 0 Or 3m + 1 = 0
3m = 2 Or 3m = -1
m = `2/3` Or m = `(-1)/3`
Resubstituting m = x - `1/x`
m = `2/3` x - `1/x = 2/3` Or `(x^2 - 1)/x = 2/3` 3x2 - 3 = 2x 3x2 - 2x - 3 = 0 Comparing with ax2 + bx + c = 0 a = 3, b = -2, c = -3 b2 - 4ac = (-2)2 - 4 (3) (-3) = 4 + 36 = 40 By formula method x = `-b ± sqrt(b^2 - 4ac)/"2a"` = `(2 ± sqrt40)/"2(3)"` = `(2 ± 2sqrt10)/6` = `(2 (1 ± sqrt10))/6` x = `(1 ± sqrt10)/3` |
m = `(-1)/3` x - `1/x = (-1)/3` `("x"^2 - 1)/"x" = (-1)/3` 3x2 - 3 = -x Comparing with ax2 + bx + c = 0 a = 3, b = 1, c = -3 b2 - 4ac = 12 - 4 (3) (-3) = 1+ 36 = 37 By formula method x = `-b ± sqrt(b^2 - 4ac)/"2a"` = `(-1 ± sqrt37)/"2(3)"` x = `(-1 ± sqrt37)/6` |
APPEARS IN
RELATED QUESTIONS
If the equation (1 + m2) x2 + 2mcx + c2 – a2 = 0 has equal roots then show that c2 = a2 (1 + m2)
In the following, determine whether the given values are solutions of the given equation or not:
`x+1/x=13/6`, `x=5/6`, `x=4/3`
If x = 2/3 and x = −3 are the roots of the equation ax2 + 7x + b = 0, find the values of aand b.
Solve the following equation using the formula:
x2 – 6x = 27
Solve `(2x)/(x - 3) + 1/(2x + 3) + (3x + 9)/((x - 3)(2x +3)) = 0; x != 3, x != - 3/2`
Solve the following equation using the formula:
`(2x + 3)/(x + 3) = (x + 4)/(x + 2)`
Without solving, comment upon the nature of roots of the following equation:
`x^2 + 2sqrt(3)x - 9 = 0`
Without solving comment upon the nature of roots of each of the following equation:
2x2 + 8x + 9 = 0
`15x^2-28=x`
`12abx^2-(9a^2-8b^2)x-6ab=0`
`a^2b^2x^2+b^2x-1=0`
`3x-4/7+7/(3x-4)=5/2,x≠4/3`
`x/(x-1)+x-1/4=4 1/4, x≠ 0,1`
`4^((x+1))+4^((1-x))=10`
Find which of the following equations are quadratic:
5x2 – 8x = –3(7 – 2x)
Find whether the value x = `(1)/(a^2)` and x = `(1)/(b^2)` are the solution of the equation:
a2b2x2 - (a2 + b2) x + 1 = 0, a ≠ 0, b ≠ 0.
Check whether the following are quadratic equations: `x - (3)/x = 2, x ≠ 0`
Solve the following equation by using formula :
`(4)/(3) - 3 = (5)/(2x + 3), x ≠ 0, -(3)/(2)`
If ax + by = = a2 - b2 and bx + ay = 0, then the value of x + y is ______.