Advertisements
Advertisements
Question
Solve the following example.
5 cm high object is placed at a distance of 25 cm from a converging lens of focal length of 10 cm. Determine the position, size and type of the image.
Solution
Given:
Height of object, ho = 5 cm
Object distance, u = -25 cm
Since the lens is converging, thus it is a convex lens.
Focal length of the lens, f = 10 cm
Using lens formula,
\[\frac{1}{v} - \frac{1}{u} = \frac{1}{f}\]
\[ \Rightarrow \frac{1}{v} = \frac{1}{10} + \frac{1}{- 25} = \frac{3}{50}\]
\[ \Rightarrow v = \frac{50}{3} = 16 . 7 cm\]
Thus, the image is formed
16 . 7 cm right of the lens.
Now, we know
\[\frac{v}{u} = \frac{h_i}{h_o}\]
\[ \Rightarrow h_i = \frac{50}{3 \times - 25} \times 5 = -\frac{10}{3} = - 3 . 3 \text{cm}\]
Thus, the size of the image is 3.3 cm. Negative sign shows that the image formed is real and inverted. Hence, the image formed is real and inverted and diminished.
APPEARS IN
RELATED QUESTIONS
The image formed by a spherical mirror is real, inverted and is of magnification -2. If the image is at a distance of 30 cm from the mirror, where is the object placed? Find the focal length of the mirror. List two characteristics of the image formed if the object is moved 10 cm towards the mirror.
A student wants to project the image of a candle flame on a screen 60 cm in front of a mirror by keeping the flame at a distance of 15 cm from its pole.
(a) Write the type of mirror he should use.
(b) Find the linear magnification of the image produced.
(c) What is the distance between the object and its image?
(d) Draw a ray diagram to show the image formation in this case.
At what distance from a concave lens of focal length 20 cm, should a 6 cm tall object be placed so that it forms an image at 15 cm from the lens ? Also determine the size of the image formed.
A student has obtained an image of a distant object on a screen to determine the focal length F1 of the given lens. His teacher, after checking the image, gave him another lens of focal length F2 and asked him to focus the same object on the same screen. The student found that to obtain a sharp image, he has to move the lens away from the screen. From this finding, we may conclude that both the lenses given to the student were :
(A) Concave and F1 < F2
(B) Convex and F1 < F2
(C) Convex and F1 > F2
(D) Concave and F1 > F2
An object is held 20 cm away from a converging lens of focal length 10 cm. Find the position of the image formed.
The image seen in a plane mirror cannot be formed on a screen. What name is given to this type of image?
What is the difference between a real image and a virtual image? Give one example of each type of image
When an object is placed at a distance of 50 cm from a concave spherical mirror, the magnification produced is, `-1/2`. Where should the object be placed to get a magnification of, `-1/5`?
An object is placed (a) 20 cm, (b) 4 cm, in front of a concave mirror of focal length 12 cm. Find the nature and position of the image formed in each case.
Magnification produced by a convex mirror is always:
(a) more than 1
(b) less than 1
(c) equal to 1
(d) more or less than 1
If a magnification of, −1 (minus one) is to be obtained by using a converging mirror, then the object has to be placed:
(a) between pole and focus
(b) at the centre of curvature
(c) beyond the centre of curvature
(d) at infinity
In order to obtain a magnification of, −1.5 with a concave mirror of focal length 16 cm, the object will have to be placed at a distance
(a) between 6 cm and 16 cm
(b) between 32 cm and 16 cm
(c) between 48 cm and 32 cm
(d) beyond 64 cm
Linear magnification (m) produced by a rear view mirror fitted in vehicles:
(a) is equal to one
(b) is less than one
(c) is more than one
(d) can be more less than one depending on the position of object
Draw a diagram to show how a converging lens held close to the eye acts as a magnifying glass. Why is it usual to choose a lens of short focal length for this purpose rather than one of long focal length?
Explain what is meant by a virtual, magnified image.
Draw a ray diagram to show the formation of a virtual magnified image of an object by a convex lens. In your diagram, the position of object and image with respect to the principal focus should be shown clearly.
Draw a ray diagram to show how a converging lens is used as a magnifying glass to observe a small object. Mark on your diagram the foci of the lens and the position of the eye.
A student wants to project the image of a candle flame on a screen 80 cm in front of a mirror by keeping the candle flame at a distance of 20 cm from its pole.
- Which type of mirror should the student use?
- Find the magnification of the image produced.
- Find the distance between the object and its image.
- Draw a ray diagram to show the image formation in this case and mark the distance between the object and its image.
An object of height 6 cm is placed perpendicular to the principal axis of a concave lens of focal length 5 cm. Use lens formula to determine the position, size and nature of the image if the distance of the object from the lens is 10 cm.
To determine focal length of a concave mirror a student obtains the image of a well lit distant object on a screen. To determine the focal length of the given concave mirror he needs to measure the distance between:
(A) mirror and the object
(B) mirror and the screen
(C) screen and the object
(D) screen and the object and also mirror and the screen
Give a scientific reason.
Simple microscope is used for watch repairs.
A lens forms the image of an object placed at a distance 15 cm from it, at a distance 60 cm in front of it. Find the magnification.
Find the position and magnification of the image of an object placed at distance of 8.0 cm in front of a convex lens of focal length 10.0 cm. Is the image erect or inverted?
The lens of the eye is flattened when looking at nearby objects.
Ravi kept a book at a distance of 10 cm from the eyes of his friend Hari. Hari is not able to read anything written in the book. Give reasons for this?
The magnification produced when an object is placed at a distance of 20 cm from a spherical mirror is +1/2. Where should the object be placed to reduce the magnification to +1/3.
The focal length of a concave lens is 20 cm. At what distance from the lens should a 5 cm tall object be placed so that its image is formed at a distance of 15 cm from the lens? Also calculate the size of the image formed.
The magnification by a lens is -3. Name the lens and state how are u and v related?
What information about the nature of image is erect or inverted, do you get from the sign of magnification + or -?