English

State Kohlrausch Law of Independent Migration of Ions. - Chemistry

Advertisements
Advertisements

Question

State Kohlrausch law of independent migration of ions. 

Definition

Solution

Kohlrausch law of independent migration of ions: The law states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

RELATED QUESTIONS

Resistance of conductivity cell filled with 0.1 M KCl solution is 100 ohms. If the resistance of the same cell when filled with 0.02 M KCl solution is 520 ohms, calculate the conductivity and molar conductivity of 0.02 M KCl solution. [Given: Conductivity of 0.1 M KCl solution is 1.29 S m-1 .]


 

The molar conductivity of cation and anion of salt BA are 180 and 220 mhos respectively. The molar conductivity of salt BA at infinite dilution is_____________ .

(a) 90 mhos.cm2                                                                             

(b) 110 mhos.cm2.mol-1

(c) 200 mhos.cm2.mol-1                                                                 

(d) 400 mhos.cm2.mol-1


The conductivity of 0.001 mol L-1 solution of CH3COOH is 3.905× 10-5 S cm-1. Calculate its molar conductivity and degree of dissociation (α) Given λ°(H+)= 349.6 S cm2 mol-1 and λ°(CH3COO)= 40.9S cm2mol-1.


The molar conductivity of 0.025 mol L−1 methanoic acid is 46.1 S cm2 mol1. Calculate its degree of dissociation and dissociation constant. Given \[\ce{λ^0_{(H^+)}}\] = 349.6 S cm2 mol1 and \[\ce{λ^0_{(HCOO^-)}}\] = 54.6 S cm2 mol1.


Write mathematical expression of molar conductivity of the given solution at infinite dilution.


Define the following terms :

Limiting molar conductivity


Conductivity always decreases with decrease in concentration both, for weak and strong electrolytes because of the fact that ____________.


The molar conductance of \[\ce{NaCl, HCl}\] and \[\ce{CH3COONa}\] at infinite dilution are 126.45, 426.16 and 91.0 S cm2 mol−1 respectively. The molar conductance of \[\ce{CH3COOH}\] at infinite dilution is. Choose the right option for your answer.


The solubility of Co2[Fe(CN)6] in water at 25°C from the following data:

Conductivity of saturated solution of Co2[Fe(CN)6] = 2.06 × 10−6 ohm−1 cm−1 and that of water = 4.1 × 10−7 ohm−1 cm−1. The ionic molar conductivities of Co2+ and [Fe(CN)6]4− are 86 and 444 ohm−1 cm2 mol−1 respectively, is ______ × 10−6 mol/L.


The following questions are case-based questions. Read the passage carefully and answer the questions that follow:

Rahul set up an experiment to find the resistance of aqueous KCl solution for different concentrations at 298 K using a conductivity cell connected to a Wheatstone bridge. He fed the Wheatstone bridge with a.c. power in the audio frequency range 550 to 5000 cycles per second. Once the resistance was calculated from the null point, he also calculated the conductivity K and molar conductivity ∧m and recorded his readings in tabular form.
S. No. Conc.
(M)
k S cm−1 m S cm2 mol−1
1. 1.00 111.3 × 10−3 111.3
2. 0.10 12.9 × 10−3 129.0
3. 0.01 1.41 × 10−3 141.0

Answer the following questions:

(a) Why does conductivity decrease with dilution? (1)

(b) If `∧_"m"^0` of KCl is 150.0 S cm2 mol−1, calculate the degree of dissociation of 0.01 M KCI. (1)

(c) If Rahul had used HCl instead of KCl then would you expect the ∧m values to be more or less than those per KCl for a given concentration? Justify. (2)

OR

(c) Amit a classmate of Rahul repeated the same experiment with CH3COOH solution instead of KCl solution. Give one point that would be similar and one that would be different in his observations as compared to Rahul. (2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×