Advertisements
Advertisements
Question
Subtract: −2(xy)2 (y3 + 7x2y + 5) from 5y2 (x2y3 – 2x4y + 10x2)
Solution
5y2 (x2y3 − 2x4y + 10x2) − [(−2)(xy)2 (y3 + 7x2y + 5)]
= [5y2(x2y3) − 5y2(2x4y) + 5y2(10x2)] −[(−2)x2y2(y3 + 7x2y + 5)]
= (5y5x2 − 10x4y3 + 50x2y2) − [(−2x2y2)(y3) + (−2x2y2)(7x2y) + (−2x2y2)(5)]
= 5x2y5 − 10x4y3 + 50x2y2 −[−2x2y5 − 14x4y3 −10x2y2]
= 5x2y5 − 10x4y3 + 50x2y2 + 2x2y5 + 14x4y3 + 10x2y2
= (5 + 2)x2y5 + (−10 + 14)x4y3 + (50 + 10)x2y2
= 7x2y5 + 4x4y3 + 60x2y2
APPEARS IN
RELATED QUESTIONS
Subtract the second expression from the first.
(5x + 4y + 7z); (x + 2y + 3z)
Subtract the second expression from the first.
(6x2 + 7xy + 16y2); (16x2 − 17xy)
Subtract the second expression from the first.
Solve:
(7m − 5n) − (−4n − 11m)
The subtraction of 5m from −3m is _____________
Subtract: 2y + z from 6z – 5y
Subtract:
2ab2c2 + 4a2b2c – 5a2bc2 from –10a2b2c + 4ab2c2 + 2a2bc2
Subtract the following expressions:
–4x2y – y3 from x3 + 3xy2 – x2y
Subtract the following expressions:
x3y2 + 3x2y2 – 7xy3 from x4 + y4 + 3x2y2 – xy3
To what expression must 99x3 – 33x2 – 13x – 41 be added to make the sum zero?