Advertisements
Advertisements
Question
The contents of 100 match boxes were checked to determine the number of matches they contained.
No. of matches | 35 | 36 | 37 | 38 | 39 | 40 | 41 |
No. of boxes | 6 | 10 | 18 | 25 | 21 | 12 | 8 |
- Calculate, correct to one decimal place, the mean number of matches per box.
- Determine, how many extra matches would have to be added to the total contents of the 100 boxes to bring the mean up to exactly 39 matches.
Solution
No. of matches (x) |
No. of boxes (f) |
fx |
35 | 6 | 210 |
36 | 10 | 360 |
37 | 18 | 666 |
38 | 25 | 950 |
39 | 21 | 819 |
40 | 12 | 480 |
41 | 8 | 328 |
Total | 100 | 3813 |
i. `barx = (sumfx)/(sumf)`
= `3813/100`
= 38.13
ii. In the second case,
New mean = 39 matches
Total contents = 39 × 100 = 3900
But total number of matches already given = 3813
Number of new matches to be added = 3900 – 3813 = 87
APPEARS IN
RELATED QUESTIONS
The marks of 10 students of a class in an examination arranged in ascending order is as follows:
13, 35, 43, 46, x, x + 4, 55, 61, 71, 80
If the median marks is 48, find the value of x. Hence, find the mode of the given data.
Calculate the mean of the following distribution :
Class Interval | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
Frequency | 8 | 5 | 12 | 35 | 24 | 16 |
1) Using step–deviation method, calculate the mean marks of the following distribution.
2) State the modal class.
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 – 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |
A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16
What are his mean marks?
At a shooting competition the score of a competitor were as given below:
Score | 0 | 1 | 2 | 3 | 4 | 5 |
No. of shots | 0 | 3 | 6 | 4 | 7 | 5 |
- What was his modal score?
- What was his median score?
- What was his total score?
- What was his mean score?
Find the mode of the following:
6, 7, 1, 8,6,5, 9, 4, 6, 7, 1,3, 2, 6, 7,8
The mean of a certain number of observations is 32. Find the resulting mean, if the observation is decreased by 20%.
Find the mean of: 12, 9, 6,11 and 17
Find the median of 1,3,4, 5, 9, 9 and 11
The median first 6 odd natural numbers is ____________